| Conditions | 1 |
| Total Lines | 56 |
| Code Lines | 29 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | import numpy as np |
||
| 7 | def test_issue_25(): |
||
| 8 | # set a path to save the dataframe |
||
| 9 | path = "./search_data.csv" |
||
| 10 | search_space = { |
||
| 11 | "n_neighbors": list(range(1, 50)), |
||
| 12 | } |
||
| 13 | |||
| 14 | # get para names from search space + the score |
||
| 15 | para_names = list(search_space.keys()) + ["score"] |
||
| 16 | |||
| 17 | # init empty pandas dataframe |
||
| 18 | search_data = pd.DataFrame(columns=para_names) |
||
| 19 | search_data.to_csv(path, index=False) |
||
| 20 | |||
| 21 | def objective_function(para): |
||
| 22 | # score = random.choice([1.2, 2.3, np.nan]) |
||
| 23 | score = np.nan |
||
| 24 | |||
| 25 | # you can access the entire dictionary from "para" |
||
| 26 | parameter_dict = para.para_dict |
||
| 27 | |||
| 28 | # save the score in the copy of the dictionary |
||
| 29 | parameter_dict["score"] = score |
||
| 30 | |||
| 31 | # append parameter dictionary to pandas dataframe |
||
| 32 | search_data = pd.read_csv(path, na_values="nan") |
||
| 33 | search_data_new = pd.DataFrame( |
||
| 34 | parameter_dict, columns=para_names, index=[0] |
||
| 35 | ) |
||
| 36 | |||
| 37 | # search_data = search_data.append(search_data_new) |
||
| 38 | search_data = pd.concat( |
||
| 39 | [search_data, search_data_new], ignore_index=True |
||
| 40 | ) |
||
| 41 | |||
| 42 | search_data.to_csv(path, index=False, na_rep="nan") |
||
| 43 | |||
| 44 | return score |
||
| 45 | |||
| 46 | hyper0 = Hyperactive() |
||
| 47 | hyper0.add_search(objective_function, search_space, n_iter=50) |
||
| 48 | hyper0.run() |
||
| 49 | |||
| 50 | search_data_0 = pd.read_csv(path, na_values="nan") |
||
| 51 | """ |
||
| 52 | the second run should be much faster than before, |
||
| 53 | because Hyperactive already knows most parameters/scores |
||
| 54 | """ |
||
| 55 | hyper1 = Hyperactive() |
||
| 56 | hyper1.add_search( |
||
| 57 | objective_function, |
||
| 58 | search_space, |
||
| 59 | n_iter=50, |
||
| 60 | memory_warm_start=search_data_0, |
||
| 61 | ) |
||
| 62 | hyper1.run() |
||
| 63 |