|
1
|
|
|
import pytest |
|
2
|
|
|
import numbers |
|
3
|
|
|
import numpy as np |
|
4
|
|
|
import pandas as pd |
|
5
|
|
|
|
|
6
|
|
|
from hyperactive.optimizers import HillClimbingOptimizer |
|
7
|
|
|
from hyperactive.experiment import BaseExperiment |
|
8
|
|
|
from hyperactive.search_config import SearchConfig |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
class Experiment(BaseExperiment): |
|
12
|
|
|
def objective_function(self, opt): |
|
13
|
|
|
score = -opt["x1"] * opt["x1"] |
|
14
|
|
|
return score |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
class Experiment1(BaseExperiment): |
|
18
|
|
|
def objective_function(self, opt): |
|
19
|
|
|
score = -opt["x1"] * opt["x1"] |
|
20
|
|
|
return score |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
experiment = Experiment() |
|
24
|
|
|
experiment1 = Experiment1() |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
|
|
search_config = SearchConfig( |
|
28
|
|
|
x1=list(np.arange(0, 100, 1)), |
|
29
|
|
|
) |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
def test_attributes_best_score_objective_function_0(): |
|
33
|
|
|
hyper = HillClimbingOptimizer() |
|
34
|
|
|
hyper.add_search( |
|
35
|
|
|
experiment, |
|
36
|
|
|
search_config, |
|
37
|
|
|
n_iter=15, |
|
38
|
|
|
) |
|
39
|
|
|
hyper.run() |
|
40
|
|
|
|
|
41
|
|
|
assert isinstance(hyper.best_score(experiment), numbers.Number) |
|
42
|
|
|
|
|
43
|
|
|
|
|
44
|
|
|
def test_attributes_best_score_objective_function_1(): |
|
45
|
|
|
hyper = HillClimbingOptimizer() |
|
46
|
|
|
hyper.add_search( |
|
47
|
|
|
experiment, |
|
48
|
|
|
search_config, |
|
49
|
|
|
n_iter=15, |
|
50
|
|
|
) |
|
51
|
|
|
hyper.add_search( |
|
52
|
|
|
experiment1, |
|
53
|
|
|
search_config, |
|
54
|
|
|
n_iter=15, |
|
55
|
|
|
) |
|
56
|
|
|
hyper.run() |
|
57
|
|
|
|
|
58
|
|
|
assert isinstance(hyper.best_score(experiment), numbers.Number) |
|
59
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
""" |
|
62
|
|
|
def test_attributes_best_score_search_id_0(): |
|
63
|
|
|
hyper = HillClimbingOptimizer() |
|
64
|
|
|
hyper.add_search( |
|
65
|
|
|
experiment, |
|
66
|
|
|
search_config, |
|
67
|
|
|
search_id="1", |
|
68
|
|
|
n_iter=15, |
|
69
|
|
|
) |
|
70
|
|
|
hyper.run() |
|
71
|
|
|
|
|
72
|
|
|
assert isinstance(hyper.best_score(experiment), numbers.Number) |
|
73
|
|
|
|
|
74
|
|
|
|
|
75
|
|
|
def test_attributes_best_score_search_id_1(): |
|
76
|
|
|
hyper = HillClimbingOptimizer() |
|
77
|
|
|
hyper.add_search( |
|
78
|
|
|
experiment, |
|
79
|
|
|
search_config, |
|
80
|
|
|
search_id="1", |
|
81
|
|
|
n_iter=15, |
|
82
|
|
|
) |
|
83
|
|
|
hyper.add_search( |
|
84
|
|
|
experiment1, |
|
85
|
|
|
search_config, |
|
86
|
|
|
search_id="2", |
|
87
|
|
|
n_iter=15, |
|
88
|
|
|
) |
|
89
|
|
|
hyper.run() |
|
90
|
|
|
|
|
91
|
|
|
assert isinstance(hyper.best_score(experiment), numbers.Number) |
|
92
|
|
|
""" |
|
93
|
|
|
|
|
94
|
|
|
|
|
95
|
|
|
def test_attributes_best_para_objective_function_0(): |
|
96
|
|
|
hyper = HillClimbingOptimizer() |
|
97
|
|
|
hyper.add_search( |
|
98
|
|
|
experiment, |
|
99
|
|
|
search_config, |
|
100
|
|
|
n_iter=15, |
|
101
|
|
|
) |
|
102
|
|
|
hyper.run() |
|
103
|
|
|
|
|
104
|
|
|
assert isinstance(hyper.best_para(experiment), dict) |
|
105
|
|
|
|
|
106
|
|
|
|
|
107
|
|
|
def test_attributes_best_para_objective_function_1(): |
|
108
|
|
|
hyper = HillClimbingOptimizer() |
|
109
|
|
|
hyper.add_search( |
|
110
|
|
|
experiment, |
|
111
|
|
|
search_config, |
|
112
|
|
|
n_iter=15, |
|
113
|
|
|
) |
|
114
|
|
|
hyper.add_search( |
|
115
|
|
|
experiment1, |
|
116
|
|
|
search_config, |
|
117
|
|
|
n_iter=15, |
|
118
|
|
|
) |
|
119
|
|
|
hyper.run() |
|
120
|
|
|
|
|
121
|
|
|
assert isinstance(hyper.best_para(experiment), dict) |
|
122
|
|
|
|
|
123
|
|
|
|
|
124
|
|
|
""" |
|
125
|
|
|
def test_attributes_best_para_search_id_0(): |
|
126
|
|
|
hyper = HillClimbingOptimizer() |
|
127
|
|
|
hyper.add_search( |
|
128
|
|
|
experiment, |
|
129
|
|
|
search_config, |
|
130
|
|
|
search_id="1", |
|
131
|
|
|
n_iter=15, |
|
132
|
|
|
) |
|
133
|
|
|
hyper.run() |
|
134
|
|
|
|
|
135
|
|
|
assert isinstance(hyper.best_para("1"), dict) |
|
136
|
|
|
|
|
137
|
|
|
|
|
138
|
|
|
def test_attributes_best_para_search_id_1(): |
|
139
|
|
|
hyper = HillClimbingOptimizer() |
|
140
|
|
|
hyper.add_search( |
|
141
|
|
|
experiment, |
|
142
|
|
|
search_config, |
|
143
|
|
|
search_id="1", |
|
144
|
|
|
n_iter=15, |
|
145
|
|
|
) |
|
146
|
|
|
hyper.add_search( |
|
147
|
|
|
experiment1, |
|
148
|
|
|
search_config, |
|
149
|
|
|
search_id="2", |
|
150
|
|
|
n_iter=15, |
|
151
|
|
|
) |
|
152
|
|
|
hyper.run() |
|
153
|
|
|
|
|
154
|
|
|
assert isinstance(hyper.best_para("1"), dict) |
|
155
|
|
|
""" |
|
156
|
|
|
|
|
157
|
|
|
|
|
158
|
|
|
def test_attributes_results_objective_function_0(): |
|
159
|
|
|
hyper = HillClimbingOptimizer() |
|
160
|
|
|
hyper.add_search( |
|
161
|
|
|
experiment, |
|
162
|
|
|
search_config, |
|
163
|
|
|
n_iter=15, |
|
164
|
|
|
) |
|
165
|
|
|
hyper.run() |
|
166
|
|
|
|
|
167
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
|
168
|
|
|
|
|
169
|
|
|
|
|
170
|
|
|
def test_attributes_results_objective_function_1(): |
|
171
|
|
|
hyper = HillClimbingOptimizer() |
|
172
|
|
|
hyper.add_search( |
|
173
|
|
|
experiment, |
|
174
|
|
|
search_config, |
|
175
|
|
|
n_iter=15, |
|
176
|
|
|
) |
|
177
|
|
|
hyper.add_search( |
|
178
|
|
|
experiment1, |
|
179
|
|
|
search_config, |
|
180
|
|
|
n_iter=15, |
|
181
|
|
|
) |
|
182
|
|
|
hyper.run() |
|
183
|
|
|
|
|
184
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
|
185
|
|
|
|
|
186
|
|
|
|
|
187
|
|
|
""" |
|
188
|
|
|
def test_attributes_results_search_id_0(): |
|
189
|
|
|
hyper = HillClimbingOptimizer() |
|
190
|
|
|
hyper.add_search( |
|
191
|
|
|
experiment, |
|
192
|
|
|
search_config, |
|
193
|
|
|
search_id="1", |
|
194
|
|
|
n_iter=15, |
|
195
|
|
|
) |
|
196
|
|
|
hyper.run() |
|
197
|
|
|
|
|
198
|
|
|
assert isinstance(hyper.search_data("1"), pd.DataFrame) |
|
199
|
|
|
|
|
200
|
|
|
|
|
201
|
|
|
def test_attributes_results_search_id_1(): |
|
202
|
|
|
hyper = HillClimbingOptimizer() |
|
203
|
|
|
hyper.add_search( |
|
204
|
|
|
experiment, |
|
205
|
|
|
search_config, |
|
206
|
|
|
search_id="1", |
|
207
|
|
|
n_iter=15, |
|
208
|
|
|
) |
|
209
|
|
|
hyper.add_search( |
|
210
|
|
|
experiment1, |
|
211
|
|
|
search_config, |
|
212
|
|
|
search_id="2", |
|
213
|
|
|
n_iter=15, |
|
214
|
|
|
) |
|
215
|
|
|
hyper.run() |
|
216
|
|
|
|
|
217
|
|
|
assert isinstance(hyper.search_data("1"), pd.DataFrame) |
|
218
|
|
|
""" |
|
219
|
|
|
|
|
220
|
|
|
|
|
221
|
|
|
def test_attributes_result_errors_0(): |
|
222
|
|
|
with pytest.raises(ValueError): |
|
223
|
|
|
hyper = HillClimbingOptimizer() |
|
224
|
|
|
hyper.add_search(experiment, search_config, n_iter=15) |
|
225
|
|
|
hyper.run() |
|
226
|
|
|
|
|
227
|
|
|
hyper.best_para(experiment1) |
|
228
|
|
|
|
|
229
|
|
|
|
|
230
|
|
|
def test_attributes_result_errors_1(): |
|
231
|
|
|
with pytest.raises(ValueError): |
|
232
|
|
|
hyper = HillClimbingOptimizer() |
|
233
|
|
|
hyper.add_search(experiment, search_config, n_iter=15) |
|
234
|
|
|
hyper.run() |
|
235
|
|
|
|
|
236
|
|
|
hyper.best_score(experiment1) |
|
237
|
|
|
|
|
238
|
|
|
|
|
239
|
|
|
def test_attributes_result_errors_2(): |
|
240
|
|
|
with pytest.raises(ValueError): |
|
241
|
|
|
hyper = HillClimbingOptimizer() |
|
242
|
|
|
hyper.add_search(experiment, search_config, n_iter=15) |
|
243
|
|
|
hyper.run() |
|
244
|
|
|
|
|
245
|
|
|
hyper.search_data(experiment1) |
|
246
|
|
|
|