1
|
|
|
import time |
2
|
|
|
import pytest |
3
|
|
|
import numpy as np |
4
|
|
|
|
5
|
|
|
from hyperactive.optimizers import RandomSearchOptimizer, HillClimbingOptimizer |
6
|
|
|
from hyperactive.experiment import BaseExperiment |
7
|
|
|
from hyperactive.search_config import SearchConfig |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
class Experiment(BaseExperiment): |
11
|
|
|
def objective_function(self, para): |
12
|
|
|
score = -para["x0"] * para["x0"] |
13
|
|
|
return score |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
experiment = Experiment() |
17
|
|
|
search_space = { |
18
|
|
|
"x0": list(np.arange(0, 100000, 0.1)), |
19
|
|
|
} |
20
|
|
|
search_config = SearchConfig( |
21
|
|
|
x0=list(np.arange(0, 100000, 0.1)), |
22
|
|
|
) |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def test_early_stop_0(): |
26
|
|
|
early_stopping = { |
27
|
|
|
"n_iter_no_change": 5, |
28
|
|
|
"tol_abs": 0.1, |
29
|
|
|
"tol_rel": 0.1, |
30
|
|
|
} |
31
|
|
|
|
32
|
|
|
hyper = RandomSearchOptimizer() |
33
|
|
|
hyper.add_search( |
34
|
|
|
experiment, |
35
|
|
|
search_config, |
36
|
|
|
n_iter=1000, |
37
|
|
|
initialize={"warm_start": [{"x0": 0}]}, |
38
|
|
|
early_stopping=early_stopping, |
39
|
|
|
) |
40
|
|
|
hyper.run() |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
def test_early_stop_1(): |
44
|
|
|
early_stopping = { |
45
|
|
|
"n_iter_no_change": 5, |
46
|
|
|
"tol_abs": None, |
47
|
|
|
"tol_rel": 5, |
48
|
|
|
} |
49
|
|
|
|
50
|
|
|
hyper = RandomSearchOptimizer() |
51
|
|
|
hyper.add_search( |
52
|
|
|
experiment, |
53
|
|
|
search_config, |
54
|
|
|
n_iter=1000, |
55
|
|
|
initialize={"warm_start": [{"x0": 0}]}, |
56
|
|
|
early_stopping=early_stopping, |
57
|
|
|
) |
58
|
|
|
hyper.run() |
59
|
|
|
|
60
|
|
|
hyper = RandomSearchOptimizer() |
61
|
|
|
hyper.add_search( |
62
|
|
|
experiment, |
63
|
|
|
search_config, |
64
|
|
|
n_iter=1000, |
65
|
|
|
initialize={"warm_start": [{"x0": 0}]}, |
66
|
|
|
early_stopping=early_stopping, |
67
|
|
|
) |
68
|
|
|
hyper.run() |
69
|
|
|
|
70
|
|
|
|
71
|
|
|
def test_early_stop_3(): |
72
|
|
|
def objective_function(para): |
73
|
|
|
score = -para["x0"] * para["x0"] |
74
|
|
|
return score |
75
|
|
|
|
76
|
|
|
search_space = { |
77
|
|
|
"x0": list(np.arange(0, 100, 0.1)), |
78
|
|
|
} |
79
|
|
|
|
80
|
|
|
n_iter_no_change = 5 |
81
|
|
|
early_stopping = { |
82
|
|
|
"n_iter_no_change": n_iter_no_change, |
83
|
|
|
} |
84
|
|
|
|
85
|
|
|
hyper = RandomSearchOptimizer() |
86
|
|
|
hyper.add_search( |
87
|
|
|
experiment, |
88
|
|
|
search_config, |
89
|
|
|
n_iter=100000, |
90
|
|
|
initialize={"warm_start": [{"x0": 0}]}, |
91
|
|
|
early_stopping=early_stopping, |
92
|
|
|
) |
93
|
|
|
hyper.run() |
94
|
|
|
|
95
|
|
|
search_data = hyper.search_data(experiment) |
96
|
|
|
n_performed_iter = len(search_data) |
97
|
|
|
|
98
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
99
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
100
|
|
|
|
101
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
102
|
|
|
|
103
|
|
|
|
104
|
|
View Code Duplication |
def test_early_stop_4(): |
|
|
|
|
105
|
|
|
class Experiment(BaseExperiment): |
106
|
|
|
def objective_function(self, para): |
107
|
|
|
return para["x0"] |
108
|
|
|
|
109
|
|
|
experiment = Experiment() |
110
|
|
|
|
111
|
|
|
search_config = SearchConfig( |
112
|
|
|
x0=list(np.arange(0, 100, 0.01)), |
113
|
|
|
) |
114
|
|
|
|
115
|
|
|
n_iter_no_change = 5 |
116
|
|
|
early_stopping = { |
117
|
|
|
"n_iter_no_change": 5, |
118
|
|
|
"tol_abs": 1, |
119
|
|
|
"tol_rel": None, |
120
|
|
|
} |
121
|
|
|
|
122
|
|
|
start1 = {"x0": 0} |
123
|
|
|
start2 = {"x0": 1} |
124
|
|
|
start3 = {"x0": 2} |
125
|
|
|
start4 = {"x0": 3} |
126
|
|
|
start5 = {"x0": 4} |
127
|
|
|
|
128
|
|
|
warm_start_l = [ |
129
|
|
|
start1, |
130
|
|
|
start1, |
131
|
|
|
start1, |
132
|
|
|
start1, |
133
|
|
|
start1, |
134
|
|
|
start2, |
135
|
|
|
start2, |
136
|
|
|
start2, |
137
|
|
|
start3, |
138
|
|
|
start3, |
139
|
|
|
start3, |
140
|
|
|
start4, |
141
|
|
|
start4, |
142
|
|
|
start4, |
143
|
|
|
start5, |
144
|
|
|
start5, |
145
|
|
|
start5, |
146
|
|
|
] |
147
|
|
|
n_iter = len(warm_start_l) |
148
|
|
|
|
149
|
|
|
hyper = RandomSearchOptimizer() |
150
|
|
|
hyper.add_search( |
151
|
|
|
experiment, |
152
|
|
|
search_config, |
153
|
|
|
n_iter=n_iter, |
154
|
|
|
initialize={"warm_start": warm_start_l}, |
155
|
|
|
early_stopping=early_stopping, |
156
|
|
|
) |
157
|
|
|
hyper.run() |
158
|
|
|
|
159
|
|
|
search_data = hyper.search_data(experiment) |
160
|
|
|
n_performed_iter = len(search_data) |
161
|
|
|
|
162
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
163
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
164
|
|
|
|
165
|
|
|
assert n_performed_iter == n_iter |
166
|
|
|
|
167
|
|
|
|
168
|
|
View Code Duplication |
def test_early_stop_5(): |
|
|
|
|
169
|
|
|
class Experiment(BaseExperiment): |
170
|
|
|
def objective_function(self, para): |
171
|
|
|
return para["x0"] |
172
|
|
|
|
173
|
|
|
experiment = Experiment() |
174
|
|
|
|
175
|
|
|
search_config = SearchConfig( |
176
|
|
|
x0=list(np.arange(0, 100, 0.01)), |
177
|
|
|
) |
178
|
|
|
|
179
|
|
|
n_iter_no_change = 5 |
180
|
|
|
early_stopping = { |
181
|
|
|
"n_iter_no_change": n_iter_no_change, |
182
|
|
|
"tol_abs": 10, |
183
|
|
|
"tol_rel": None, |
184
|
|
|
} |
185
|
|
|
|
186
|
|
|
start1 = {"x0": 0} |
187
|
|
|
start2 = {"x0": 9} |
188
|
|
|
start3 = {"x0": 20} |
189
|
|
|
|
190
|
|
|
warm_start_l = [ |
191
|
|
|
start1, |
192
|
|
|
start1, |
193
|
|
|
start1, |
194
|
|
|
start1, |
195
|
|
|
start1, |
196
|
|
|
start2, |
197
|
|
|
start2, |
198
|
|
|
start2, |
199
|
|
|
start3, |
200
|
|
|
start3, |
201
|
|
|
start3, |
202
|
|
|
] |
203
|
|
|
n_iter = len(warm_start_l) |
204
|
|
|
|
205
|
|
|
hyper = RandomSearchOptimizer() |
206
|
|
|
hyper.add_search( |
207
|
|
|
experiment, |
208
|
|
|
search_config, |
209
|
|
|
n_iter=n_iter, |
210
|
|
|
initialize={"warm_start": warm_start_l}, |
211
|
|
|
early_stopping=early_stopping, |
212
|
|
|
) |
213
|
|
|
hyper.run() |
214
|
|
|
|
215
|
|
|
search_data = hyper.search_data(experiment) |
216
|
|
|
n_performed_iter = len(search_data) |
217
|
|
|
|
218
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
219
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
220
|
|
|
|
221
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
222
|
|
|
|
223
|
|
|
|
224
|
|
View Code Duplication |
def test_early_stop_6(): |
|
|
|
|
225
|
|
|
class Experiment(BaseExperiment): |
226
|
|
|
def objective_function(self, para): |
227
|
|
|
return para["x0"] |
228
|
|
|
|
229
|
|
|
experiment = Experiment() |
230
|
|
|
|
231
|
|
|
search_config = SearchConfig( |
232
|
|
|
x0=list(np.arange(0, 100, 0.01)), |
233
|
|
|
) |
234
|
|
|
|
235
|
|
|
n_iter_no_change = 5 |
236
|
|
|
early_stopping = { |
237
|
|
|
"n_iter_no_change": 5, |
238
|
|
|
"tol_abs": None, |
239
|
|
|
"tol_rel": 10, |
240
|
|
|
} |
241
|
|
|
|
242
|
|
|
start1 = {"x0": 1} |
243
|
|
|
start2 = {"x0": 1.1} |
244
|
|
|
start3 = {"x0": 1.22} |
245
|
|
|
start4 = {"x0": 1.35} |
246
|
|
|
start5 = {"x0": 1.48} |
247
|
|
|
|
248
|
|
|
warm_start_l = [ |
249
|
|
|
start1, |
250
|
|
|
start1, |
251
|
|
|
start1, |
252
|
|
|
start1, |
253
|
|
|
start1, |
254
|
|
|
start2, |
255
|
|
|
start2, |
256
|
|
|
start2, |
257
|
|
|
start3, |
258
|
|
|
start3, |
259
|
|
|
start3, |
260
|
|
|
start4, |
261
|
|
|
start4, |
262
|
|
|
start4, |
263
|
|
|
start5, |
264
|
|
|
start5, |
265
|
|
|
start5, |
266
|
|
|
] |
267
|
|
|
n_iter = len(warm_start_l) |
268
|
|
|
|
269
|
|
|
hyper = RandomSearchOptimizer() |
270
|
|
|
hyper.add_search( |
271
|
|
|
experiment, |
272
|
|
|
search_config, |
273
|
|
|
n_iter=n_iter, |
274
|
|
|
initialize={"warm_start": warm_start_l}, |
275
|
|
|
early_stopping=early_stopping, |
276
|
|
|
) |
277
|
|
|
hyper.run() |
278
|
|
|
|
279
|
|
|
search_data = hyper.search_data(experiment) |
280
|
|
|
n_performed_iter = len(search_data) |
281
|
|
|
|
282
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
283
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
284
|
|
|
|
285
|
|
|
assert n_performed_iter == n_iter |
286
|
|
|
|
287
|
|
|
|
288
|
|
View Code Duplication |
def test_early_stop_7(): |
|
|
|
|
289
|
|
|
def objective_function(para): |
290
|
|
|
return para["x0"] |
291
|
|
|
|
292
|
|
|
experiment = Experiment() |
293
|
|
|
|
294
|
|
|
search_config = SearchConfig( |
295
|
|
|
x0=list(np.arange(0, 100, 0.01)), |
296
|
|
|
) |
297
|
|
|
|
298
|
|
|
n_iter_no_change = 5 |
299
|
|
|
early_stopping = { |
300
|
|
|
"n_iter_no_change": n_iter_no_change, |
301
|
|
|
"tol_abs": None, |
302
|
|
|
"tol_rel": 10, |
303
|
|
|
} |
304
|
|
|
|
305
|
|
|
start1 = {"x0": 1} |
306
|
|
|
start2 = {"x0": 1.09} |
307
|
|
|
start3 = {"x0": 1.20} |
308
|
|
|
|
309
|
|
|
warm_start_l = [ |
310
|
|
|
start1, |
311
|
|
|
start1, |
312
|
|
|
start1, |
313
|
|
|
start1, |
314
|
|
|
start1, |
315
|
|
|
start2, |
316
|
|
|
start2, |
317
|
|
|
start2, |
318
|
|
|
start3, |
319
|
|
|
start3, |
320
|
|
|
start3, |
321
|
|
|
] |
322
|
|
|
n_iter = len(warm_start_l) |
323
|
|
|
|
324
|
|
|
hyper = RandomSearchOptimizer() |
325
|
|
|
hyper.add_search( |
326
|
|
|
experiment, |
327
|
|
|
search_config, |
328
|
|
|
n_iter=n_iter, |
329
|
|
|
initialize={"warm_start": warm_start_l}, |
330
|
|
|
early_stopping=early_stopping, |
331
|
|
|
) |
332
|
|
|
hyper.run() |
333
|
|
|
|
334
|
|
|
search_data = hyper.search_data(experiment) |
335
|
|
|
n_performed_iter = len(search_data) |
336
|
|
|
|
337
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
338
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
339
|
|
|
|
340
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
341
|
|
|
|