| Total Complexity | 6 |
| Total Lines | 137 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import copy |
||
| 2 | import pytest |
||
| 3 | import math |
||
| 4 | import numpy as np |
||
| 5 | import pandas as pd |
||
| 6 | |||
| 7 | from hyperactive import Hyperactive |
||
| 8 | |||
| 9 | |||
| 10 | search_space = { |
||
| 11 | "x1": list(np.arange(-100, 100, 1)), |
||
| 12 | } |
||
| 13 | |||
| 14 | |||
| 15 | def test_catch_0(): |
||
| 16 | def objective_function(access): |
||
| 17 | x = y |
||
|
|
|||
| 18 | |||
| 19 | return 0 |
||
| 20 | |||
| 21 | hyper = Hyperactive() |
||
| 22 | hyper.add_search( |
||
| 23 | objective_function, |
||
| 24 | search_space, |
||
| 25 | n_iter=100, |
||
| 26 | catch={NameError: np.nan}, |
||
| 27 | ) |
||
| 28 | hyper.run() |
||
| 29 | |||
| 30 | |||
| 31 | def test_catch_1(): |
||
| 32 | def objective_function(access): |
||
| 33 | a = 1 + "str" |
||
| 34 | |||
| 35 | return 0 |
||
| 36 | |||
| 37 | hyper = Hyperactive() |
||
| 38 | hyper.add_search( |
||
| 39 | objective_function, |
||
| 40 | search_space, |
||
| 41 | n_iter=100, |
||
| 42 | catch={TypeError: np.nan}, |
||
| 43 | ) |
||
| 44 | hyper.run() |
||
| 45 | |||
| 46 | |||
| 47 | def test_catch_2(): |
||
| 48 | def objective_function(access): |
||
| 49 | math.sqrt(-10) |
||
| 50 | |||
| 51 | return 0 |
||
| 52 | |||
| 53 | hyper = Hyperactive() |
||
| 54 | hyper.add_search( |
||
| 55 | objective_function, |
||
| 56 | search_space, |
||
| 57 | n_iter=100, |
||
| 58 | catch={ValueError: np.nan}, |
||
| 59 | ) |
||
| 60 | hyper.run() |
||
| 61 | |||
| 62 | |||
| 63 | def test_catch_3(): |
||
| 64 | def objective_function(access): |
||
| 65 | x = 1 / 0 |
||
| 66 | |||
| 67 | return 0 |
||
| 68 | |||
| 69 | hyper = Hyperactive() |
||
| 70 | hyper.add_search( |
||
| 71 | objective_function, |
||
| 72 | search_space, |
||
| 73 | n_iter=100, |
||
| 74 | catch={ZeroDivisionError: np.nan}, |
||
| 75 | ) |
||
| 76 | hyper.run() |
||
| 77 | |||
| 78 | |||
| 79 | def test_catch_all_0(): |
||
| 80 | def objective_function(access): |
||
| 81 | x = y |
||
| 82 | a = 1 + "str" |
||
| 83 | math.sqrt(-10) |
||
| 84 | x = 1 / 0 |
||
| 85 | |||
| 86 | return 0 |
||
| 87 | |||
| 88 | hyper = Hyperactive() |
||
| 89 | hyper.add_search( |
||
| 90 | objective_function, |
||
| 91 | search_space, |
||
| 92 | n_iter=100, |
||
| 93 | catch={ |
||
| 94 | NameError: np.nan, |
||
| 95 | TypeError: np.nan, |
||
| 96 | ValueError: np.nan, |
||
| 97 | ZeroDivisionError: np.nan, |
||
| 98 | }, |
||
| 99 | ) |
||
| 100 | hyper.run() |
||
| 101 | |||
| 102 | nan_ = hyper.search_data(objective_function)["score"].values[0] |
||
| 103 | |||
| 104 | assert math.isnan(nan_) |
||
| 105 | |||
| 106 | |||
| 107 | def test_catch_all_1(): |
||
| 108 | def objective_function(access): |
||
| 109 | x = y |
||
| 110 | a = 1 + "str" |
||
| 111 | math.sqrt(-10) |
||
| 112 | x = 1 / 0 |
||
| 113 | |||
| 114 | return 0, {"error": False} |
||
| 115 | |||
| 116 | catch_return = (np.nan, {"error": True}) |
||
| 117 | |||
| 118 | hyper = Hyperactive() |
||
| 119 | hyper.add_search( |
||
| 120 | objective_function, |
||
| 121 | search_space, |
||
| 122 | n_iter=100, |
||
| 123 | catch={ |
||
| 124 | NameError: catch_return, |
||
| 125 | TypeError: catch_return, |
||
| 126 | ValueError: catch_return, |
||
| 127 | ZeroDivisionError: catch_return, |
||
| 128 | }, |
||
| 129 | ) |
||
| 130 | hyper.run() |
||
| 131 | |||
| 132 | nan_ = hyper.search_data(objective_function)["score"].values[0] |
||
| 133 | error_ = hyper.search_data(objective_function)["error"].values[0] |
||
| 134 | |||
| 135 | assert math.isnan(nan_) |
||
| 136 | assert error_ == True |
||
| 137 |