| Total Complexity | 8 |
| Total Lines | 53 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | # Author: Simon Blanke |
||
| 2 | # Email: [email protected] |
||
| 3 | # License: MIT License |
||
| 4 | |||
| 5 | |||
| 6 | import numpy as np |
||
| 7 | from .dictionary import DictClass |
||
| 8 | |||
| 9 | |||
| 10 | def gfo2hyper(search_space, para): |
||
| 11 | values_dict = {} |
||
| 12 | for _, key in enumerate(search_space.keys()): |
||
| 13 | pos_ = int(para[key]) |
||
| 14 | values_dict[key] = search_space[key][pos_] |
||
| 15 | |||
| 16 | return values_dict |
||
| 17 | |||
| 18 | |||
| 19 | class ObjectiveFunction(DictClass): |
||
| 20 | def __init__(self, objective_function, optimizer, callbacks, catch, nth_process): |
||
| 21 | super().__init__() |
||
| 22 | |||
| 23 | self.objective_function = objective_function |
||
| 24 | self.optimizer = optimizer |
||
| 25 | self.callbacks = callbacks |
||
| 26 | self.catch = catch |
||
| 27 | self.nth_process = nth_process |
||
| 28 | |||
| 29 | self.nth_iter = 0 |
||
| 30 | |||
| 31 | def run_callbacks(self, type_): |
||
| 32 | if self.callbacks and type_ in self.callbacks: |
||
| 33 | [callback(self) for callback in self.callbacks[type_]] |
||
| 34 | |||
| 35 | def __call__(self, search_space): |
||
| 36 | # wrapper for GFOs |
||
| 37 | def _model(para): |
||
| 38 | self.nth_iter = len(self.optimizer.pos_l) |
||
| 39 | para = gfo2hyper(search_space, para) |
||
| 40 | self.para_dict = para |
||
| 41 | |||
| 42 | try: |
||
| 43 | self.run_callbacks("before") |
||
| 44 | results = self.objective_function(self) |
||
| 45 | self.run_callbacks("after") |
||
| 46 | except tuple(self.catch.keys()) as e: |
||
| 47 | results = self.catch[e.__class__] |
||
| 48 | |||
| 49 | return results |
||
| 50 | |||
| 51 | _model.__name__ = self.objective_function.__name__ |
||
| 52 | return _model |
||
| 53 |