| Total Complexity | 1 |
| Total Lines | 58 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import time |
||
| 2 | import pytest |
||
| 3 | import numpy as np |
||
| 4 | |||
| 5 | |||
| 6 | from hyperactive import Hyperactive |
||
| 7 | from hyperactive.optimizers.strategies import CustomOptimizationStrategy |
||
| 8 | from hyperactive.optimizers import GridSearchOptimizer |
||
| 9 | |||
| 10 | from ._parametrize import optimizers_smbo |
||
| 11 | |||
| 12 | |||
| 13 | @pytest.mark.parametrize(*optimizers_smbo) |
||
| 14 | def test_memory_Warm_start_smbo_0(Optimizer_smbo): |
||
| 15 | def objective_function(opt): |
||
| 16 | time.sleep(0.01) |
||
| 17 | score = -(opt["x1"] * opt["x1"]) |
||
| 18 | return score |
||
| 19 | |||
| 20 | search_space = { |
||
| 21 | "x1": list(np.arange(0, 100, 1)), |
||
| 22 | } |
||
| 23 | |||
| 24 | optimizer1 = GridSearchOptimizer() |
||
| 25 | optimizer2 = Optimizer_smbo() |
||
| 26 | |||
| 27 | opt_strat = CustomOptimizationStrategy() |
||
| 28 | |||
| 29 | duration_1 = 0.8 |
||
| 30 | duration_2 = 0.2 |
||
| 31 | |||
| 32 | opt_strat.add_optimizer(optimizer1, duration=duration_1) |
||
| 33 | opt_strat.add_optimizer(optimizer2, duration=duration_2) |
||
| 34 | |||
| 35 | n_iter = 20 |
||
| 36 | |||
| 37 | hyper = Hyperactive() |
||
| 38 | hyper.add_search( |
||
| 39 | objective_function, |
||
| 40 | search_space, |
||
| 41 | optimizer=opt_strat, |
||
| 42 | n_iter=n_iter, |
||
| 43 | memory=True, |
||
| 44 | ) |
||
| 45 | hyper.run() |
||
| 46 | |||
| 47 | search_data = hyper.search_data(objective_function) |
||
| 48 | |||
| 49 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
||
| 50 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
||
| 51 | |||
| 52 | assert len(search_data) == n_iter |
||
| 53 | |||
| 54 | assert len(optimizer1.search_data) == int(n_iter * duration_1) |
||
| 55 | assert len(optimizer2.search_data) == int(n_iter * duration_2) |
||
| 56 | |||
| 57 | assert optimizer1.best_score <= optimizer2.best_score |
||
| 58 |