1
|
|
|
import numpy as np |
2
|
|
|
import pandas as pd |
3
|
|
|
|
4
|
|
|
from hyperactive.optimizers import HillClimbingOptimizer |
5
|
|
|
from hyperactive.experiment import BaseExperiment |
6
|
|
|
from hyperactive.search_config import SearchConfig |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class Experiment(BaseExperiment): |
10
|
|
|
def objective_function(self, opt): |
11
|
|
|
score = -opt["x1"] * opt["x1"] |
12
|
|
|
return score |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
experiment = Experiment() |
16
|
|
|
|
17
|
|
|
|
18
|
|
View Code Duplication |
def test_search_space_0(): |
|
|
|
|
19
|
|
|
search_config = SearchConfig( |
20
|
|
|
x1=list(np.arange(0, 3, 1)), |
21
|
|
|
) |
22
|
|
|
|
23
|
|
|
hyper = HillClimbingOptimizer() |
24
|
|
|
hyper.add_search( |
25
|
|
|
experiment, |
26
|
|
|
search_config, |
27
|
|
|
n_iter=15, |
28
|
|
|
) |
29
|
|
|
hyper.run() |
30
|
|
|
|
31
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
32
|
|
|
assert hyper.best_para(experiment)["x1"] in search_config["x1"] |
33
|
|
|
|
34
|
|
|
|
35
|
|
View Code Duplication |
def test_search_space_1(): |
|
|
|
|
36
|
|
|
search_config = SearchConfig( |
37
|
|
|
x1=list(np.arange(0, 0.003, 0.001)), |
38
|
|
|
) |
39
|
|
|
|
40
|
|
|
hyper = HillClimbingOptimizer() |
41
|
|
|
hyper.add_search( |
42
|
|
|
experiment, |
43
|
|
|
search_config, |
44
|
|
|
n_iter=15, |
45
|
|
|
) |
46
|
|
|
hyper.run() |
47
|
|
|
|
48
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
49
|
|
|
assert hyper.best_para(experiment)["x1"] in search_config["x1"] |
50
|
|
|
|
51
|
|
|
|
52
|
|
View Code Duplication |
def test_search_space_2(): |
|
|
|
|
53
|
|
|
search_config = SearchConfig( |
54
|
|
|
x1=list(np.arange(0, 100, 1)), |
55
|
|
|
str1=["0", "1", "2"], |
56
|
|
|
) |
57
|
|
|
|
58
|
|
|
hyper = HillClimbingOptimizer() |
59
|
|
|
hyper.add_search( |
60
|
|
|
experiment, |
61
|
|
|
search_config, |
62
|
|
|
n_iter=15, |
63
|
|
|
) |
64
|
|
|
hyper.run() |
65
|
|
|
|
66
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
67
|
|
|
assert hyper.best_para(experiment)["str1"] in search_config["str1"] |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
def test_search_space_3(): |
71
|
|
|
def func1(): |
72
|
|
|
pass |
73
|
|
|
|
74
|
|
|
def func2(): |
75
|
|
|
pass |
76
|
|
|
|
77
|
|
|
def func3(): |
78
|
|
|
pass |
79
|
|
|
|
80
|
|
|
search_config = SearchConfig( |
81
|
|
|
x1=list(np.arange(0, 100, 1)), |
82
|
|
|
func1=[func1, func2, func3], |
83
|
|
|
) |
84
|
|
|
|
85
|
|
|
hyper = HillClimbingOptimizer() |
86
|
|
|
hyper.add_search( |
87
|
|
|
experiment, |
88
|
|
|
search_config, |
89
|
|
|
n_iter=15, |
90
|
|
|
) |
91
|
|
|
hyper.run() |
92
|
|
|
|
93
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
94
|
|
|
assert hyper.best_para(experiment)["func1"] in search_config["func1"] |
95
|
|
|
|
96
|
|
|
|
97
|
|
|
def test_search_space_4(): |
98
|
|
|
class class1: |
99
|
|
|
pass |
100
|
|
|
|
101
|
|
|
class class2: |
102
|
|
|
pass |
103
|
|
|
|
104
|
|
|
class class3: |
105
|
|
|
pass |
106
|
|
|
|
107
|
|
|
search_config = SearchConfig( |
108
|
|
|
x1=list(np.arange(0, 100, 1)), |
109
|
|
|
class1=[class1, class2, class3], |
110
|
|
|
) |
111
|
|
|
|
112
|
|
|
hyper = HillClimbingOptimizer() |
113
|
|
|
hyper.add_search( |
114
|
|
|
experiment, |
115
|
|
|
search_config, |
116
|
|
|
n_iter=15, |
117
|
|
|
) |
118
|
|
|
hyper.run() |
119
|
|
|
|
120
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
121
|
|
|
assert hyper.best_para(experiment)["class1"] in search_config["class1"] |
122
|
|
|
|
123
|
|
|
|
124
|
|
|
def test_search_space_5(): |
125
|
|
|
class class1: |
126
|
|
|
def __init__(self): |
127
|
|
|
pass |
128
|
|
|
|
129
|
|
|
class class2: |
130
|
|
|
def __init__(self): |
131
|
|
|
pass |
132
|
|
|
|
133
|
|
|
class class3: |
134
|
|
|
def __init__(self): |
135
|
|
|
pass |
136
|
|
|
|
137
|
|
|
def class_f1(): |
138
|
|
|
return class1 |
139
|
|
|
|
140
|
|
|
def class_f2(): |
141
|
|
|
return class2 |
142
|
|
|
|
143
|
|
|
def class_f3(): |
144
|
|
|
return class3 |
145
|
|
|
|
146
|
|
|
search_config = SearchConfig( |
147
|
|
|
x1=list(np.arange(0, 100, 1)), |
148
|
|
|
class1=[class_f1, class_f2, class_f3], |
149
|
|
|
) |
150
|
|
|
|
151
|
|
|
hyper = HillClimbingOptimizer() |
152
|
|
|
hyper.add_search( |
153
|
|
|
experiment, |
154
|
|
|
search_config, |
155
|
|
|
n_iter=15, |
156
|
|
|
) |
157
|
|
|
hyper.run() |
158
|
|
|
|
159
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
160
|
|
|
assert hyper.best_para(experiment)["class1"] in search_config["class1"] |
161
|
|
|
|
162
|
|
|
|
163
|
|
|
def test_search_space_6(): |
164
|
|
|
|
165
|
|
|
def list_f1(): |
166
|
|
|
return [0, 1] |
167
|
|
|
|
168
|
|
|
def list_f2(): |
169
|
|
|
return [1, 0] |
170
|
|
|
|
171
|
|
|
search_config = SearchConfig( |
172
|
|
|
x1=list(np.arange(0, 100, 1)), |
173
|
|
|
list1=[list_f1, list_f2], |
174
|
|
|
) |
175
|
|
|
|
176
|
|
|
hyper = HillClimbingOptimizer() |
177
|
|
|
hyper.add_search( |
178
|
|
|
experiment, |
179
|
|
|
search_config, |
180
|
|
|
n_iter=15, |
181
|
|
|
) |
182
|
|
|
hyper.run() |
183
|
|
|
|
184
|
|
|
assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
185
|
|
|
assert hyper.best_para(experiment)["list1"] in search_config["list1"] |
186
|
|
|
|