Total Complexity | 3 |
Total Lines | 42 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import numpy as np |
||
2 | import pandas as pd |
||
3 | from hyperactive import Hyperactive |
||
4 | |||
5 | |||
6 | def function_(): |
||
7 | pass |
||
8 | |||
9 | |||
10 | class class_: |
||
11 | def __init__(self): |
||
12 | pass |
||
13 | |||
14 | |||
15 | # Hyperactive can handle python objects in the search space |
||
16 | search_space = { |
||
17 | "int": list(range(1, 10)), |
||
18 | "float": [0.1, 0.01, 0.001], |
||
19 | "string": ["string1", "string2"], |
||
20 | "function": [function_], |
||
21 | "class": [class_], |
||
22 | "list": [[1, 1, 1], [1, 1, 2], [1, 2, 1]], |
||
23 | "numpy": [np.array([1, 2, 3])], |
||
24 | "pandas": [pd.DataFrame([[1, 2], [3, 4]], columns=["y1", "y2"])], |
||
25 | } |
||
26 | |||
27 | |||
28 | def objective_function(para): |
||
29 | # score must be a single number |
||
30 | score = 1 |
||
31 | return score |
||
32 | |||
33 | |||
34 | hyper = Hyperactive() |
||
35 | hyper.add_search(objective_function, search_space, n_iter=20) |
||
36 | hyper.run() |
||
37 | |||
38 | search_data = hyper.results(objective_function) |
||
39 | |||
40 | for col_name in search_data.columns: |
||
41 | print("\nColumn name:", col_name, "\n", search_data[col_name][0]) |
||
42 |