| Total Complexity | 3 |
| Total Lines | 42 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import numpy as np |
||
| 2 | import pandas as pd |
||
| 3 | from hyperactive import Hyperactive |
||
| 4 | |||
| 5 | |||
| 6 | def function_(): |
||
| 7 | pass |
||
| 8 | |||
| 9 | |||
| 10 | class class_: |
||
| 11 | def __init__(self): |
||
| 12 | pass |
||
| 13 | |||
| 14 | |||
| 15 | # Hyperactive can handle python objects in the search space |
||
| 16 | search_space = { |
||
| 17 | "int": list(range(1, 10)), |
||
| 18 | "float": [0.1, 0.01, 0.001], |
||
| 19 | "string": ["string1", "string2"], |
||
| 20 | "function": [function_], |
||
| 21 | "class": [class_], |
||
| 22 | "list": [[1, 1, 1], [1, 1, 2], [1, 2, 1]], |
||
| 23 | "numpy": [np.array([1, 2, 3])], |
||
| 24 | "pandas": [pd.DataFrame([[1, 2], [3, 4]], columns=["y1", "y2"])], |
||
| 25 | } |
||
| 26 | |||
| 27 | |||
| 28 | def objective_function(para): |
||
| 29 | # score must be a single number |
||
| 30 | score = 1 |
||
| 31 | return score |
||
| 32 | |||
| 33 | |||
| 34 | hyper = Hyperactive() |
||
| 35 | hyper.add_search(objective_function, search_space, n_iter=20) |
||
| 36 | hyper.run() |
||
| 37 | |||
| 38 | search_data = hyper.results(objective_function) |
||
| 39 | |||
| 40 | for col_name in search_data.columns: |
||
| 41 | print("\nColumn name:", col_name, "\n", search_data[col_name][0]) |
||
| 42 |