|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import abc |
|
6
|
|
|
from tqdm.auto import tqdm |
|
7
|
|
|
|
|
8
|
|
|
from .util import sort_for_best |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
class Verbosity(metaclass=abc.ABCMeta): |
|
12
|
|
|
def __init__(self): |
|
13
|
|
|
pass |
|
14
|
|
|
|
|
15
|
|
|
@abc.abstractmethod |
|
16
|
|
|
def print_start_point(self, _cand_): |
|
17
|
|
|
pass |
|
18
|
|
|
|
|
19
|
|
|
@abc.abstractmethod |
|
20
|
|
|
def print_start_points(self, _cand_): |
|
21
|
|
|
pass |
|
22
|
|
|
|
|
23
|
|
|
def init_p_bar(self, _cand_, _core_): |
|
24
|
|
|
pass |
|
25
|
|
|
|
|
26
|
|
|
def update_p_bar(self, n, _cand_): |
|
27
|
|
|
pass |
|
28
|
|
|
|
|
29
|
|
|
def close_p_bar(self): |
|
30
|
|
|
pass |
|
31
|
|
|
|
|
32
|
|
|
def _tqdm_dict(self, _cand_): |
|
33
|
|
|
pass |
|
34
|
|
|
|
|
35
|
|
|
|
|
36
|
|
|
class VerbosityLVL0(Verbosity): |
|
37
|
|
|
def __init__(self): |
|
38
|
|
|
pass |
|
39
|
|
|
|
|
40
|
|
|
def print_start_point(self, _cand_): |
|
41
|
|
|
return _cand_._get_warm_start() |
|
42
|
|
|
|
|
43
|
|
|
def print_start_points(self, _cand_list, _core_): |
|
44
|
|
|
start_point_list = [] |
|
45
|
|
|
score_best_list = [] |
|
46
|
|
|
model_best_list = [] |
|
47
|
|
|
results = {} |
|
48
|
|
|
|
|
49
|
|
|
for _cand_ in _cand_list: |
|
50
|
|
|
model_best = _cand_.model_best |
|
51
|
|
|
score_best = _cand_.score_best |
|
52
|
|
|
start_point = _cand_._get_warm_start() |
|
53
|
|
|
|
|
54
|
|
|
results[score_best] = start_point |
|
55
|
|
|
|
|
56
|
|
|
start_point_list.append(start_point) |
|
57
|
|
|
score_best_list.append(score_best) |
|
58
|
|
|
model_best_list.append(model_best) |
|
59
|
|
|
|
|
60
|
|
|
start_point_sorted, score_best_sorted = sort_for_best( |
|
61
|
|
|
start_point_list, score_best_list |
|
62
|
|
|
) |
|
63
|
|
|
|
|
64
|
|
|
model_best_sorted, score_best_sorted = sort_for_best( |
|
65
|
|
|
model_best_list, score_best_list |
|
66
|
|
|
) |
|
67
|
|
|
|
|
68
|
|
|
return score_best_sorted, model_best_sorted, results |
|
69
|
|
|
|
|
70
|
|
|
|
|
71
|
|
|
class VerbosityLVL1(VerbosityLVL0): |
|
72
|
|
|
def __init__(self): |
|
73
|
|
|
pass |
|
74
|
|
|
|
|
75
|
|
|
def print_start_point(self, _cand_): |
|
76
|
|
|
start_point = _cand_._get_warm_start() |
|
77
|
|
|
print("\nbest para =", start_point) |
|
78
|
|
|
print("score =", _cand_.score_best) |
|
79
|
|
|
|
|
80
|
|
|
return start_point |
|
81
|
|
|
|
|
82
|
|
|
def print_start_points(self, _cand_list, _core_): |
|
83
|
|
|
start_point_list = [] |
|
84
|
|
|
score_best_list = [] |
|
85
|
|
|
model_best_list = [] |
|
86
|
|
|
results = {} |
|
87
|
|
|
|
|
88
|
|
|
for _cand_ in _cand_list: |
|
89
|
|
|
model_best = _cand_.model_best |
|
90
|
|
|
score_best = _cand_.score_best |
|
91
|
|
|
start_point = _cand_._get_warm_start() |
|
92
|
|
|
|
|
93
|
|
|
results[score_best] = start_point |
|
94
|
|
|
|
|
95
|
|
|
start_point_list.append(start_point) |
|
96
|
|
|
score_best_list.append(score_best) |
|
97
|
|
|
model_best_list.append(model_best) |
|
98
|
|
|
|
|
99
|
|
|
start_point_sorted, score_best_sorted = sort_for_best( |
|
100
|
|
|
start_point_list, score_best_list |
|
101
|
|
|
) |
|
102
|
|
|
|
|
103
|
|
|
model_best_sorted, score_best_sorted = sort_for_best( |
|
104
|
|
|
model_best_list, score_best_list |
|
105
|
|
|
) |
|
106
|
|
|
|
|
107
|
|
|
for i in range(int(_core_.n_jobs / 2)): |
|
108
|
|
|
print("\n") |
|
109
|
|
|
print("\nList of start points (best first):\n") |
|
110
|
|
|
for start_point, score_best in zip(start_point_sorted, score_best_sorted): |
|
111
|
|
|
print("best para =", start_point) |
|
112
|
|
|
print("score =", score_best, "\n") |
|
113
|
|
|
|
|
114
|
|
|
return score_best_sorted, model_best_sorted, results |
|
115
|
|
|
|
|
116
|
|
|
|
|
117
|
|
|
class VerbosityLVL2(VerbosityLVL1): |
|
118
|
|
|
def __init__(self): |
|
119
|
|
|
pass |
|
120
|
|
|
|
|
121
|
|
|
def init_p_bar(self, _cand_, _core_): |
|
122
|
|
|
self.p_bar = tqdm(**self._tqdm_dict(_cand_, _core_)) |
|
123
|
|
|
|
|
124
|
|
|
def update_p_bar(self, n, _cand_): |
|
125
|
|
|
self.p_bar.update(n) |
|
126
|
|
|
self.p_bar.set_postfix(best_score=str(_cand_.score_best)) |
|
127
|
|
|
|
|
128
|
|
|
def close_p_bar(self): |
|
129
|
|
|
self.p_bar.close() |
|
130
|
|
|
|
|
131
|
|
|
def _tqdm_dict(self, _cand_, _core_): |
|
132
|
|
|
"""Generates the parameter dict for tqdm in the iteration-loop of each optimizer""" |
|
133
|
|
|
return { |
|
134
|
|
|
"total": _core_.n_iter, |
|
135
|
|
|
"desc": "Thread " |
|
136
|
|
|
+ str(_cand_.nth_process) |
|
137
|
|
|
+ " -> " |
|
138
|
|
|
+ _cand_._model_.func_.__name__, |
|
139
|
|
|
"position": _cand_.nth_process, |
|
140
|
|
|
"leave": True, |
|
141
|
|
|
} |
|
142
|
|
|
|
|
143
|
|
|
|
|
144
|
|
|
class VerbosityLVL10(VerbosityLVL0): |
|
145
|
|
|
def __init__(self): |
|
146
|
|
|
pass |
|
147
|
|
|
|
|
148
|
|
|
def start_search(self): |
|
149
|
|
|
print("") |
|
150
|
|
|
|
|
151
|
|
|
def get_search_path(self): |
|
152
|
|
|
pass |
|
153
|
|
|
|