1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
import random |
7
|
|
|
import numpy as np |
8
|
|
|
import multiprocessing |
9
|
|
|
|
10
|
|
|
from .util import merge_dicts |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
class Core: |
14
|
|
|
def __init__(self, *args, **kwargs): |
15
|
|
|
kwargs_base = { |
16
|
|
|
"n_iter": 10, |
17
|
|
|
"max_time": None, |
18
|
|
|
"optimizer": "RandomSearch", |
19
|
|
|
"n_jobs": 1, |
20
|
|
|
"verbosity": 2, |
21
|
|
|
"warnings": True, |
22
|
|
|
"random_state": None, |
23
|
|
|
"warm_start": False, |
24
|
|
|
"memory": True, |
25
|
|
|
"scatter_init": False, |
26
|
|
|
"meta_learn": False, |
27
|
|
|
"proxy_dataset": False, |
28
|
|
|
"get_search_path": False, |
29
|
|
|
} |
30
|
|
|
|
31
|
|
|
self.search_config = args[0] |
32
|
|
|
self.opt_para = dict() |
33
|
|
|
|
34
|
|
|
if "optimizer" in kwargs and isinstance(kwargs["optimizer"], dict): |
35
|
|
|
opt = list(kwargs["optimizer"].keys())[0] |
36
|
|
|
self.opt_para = kwargs["optimizer"][opt] |
37
|
|
|
|
38
|
|
|
kwargs["optimizer"] = opt |
39
|
|
|
|
40
|
|
|
kwargs_base = merge_dicts(kwargs_base, kwargs) |
41
|
|
|
self._set_general_args(kwargs_base) |
42
|
|
|
|
43
|
|
|
self.model_list = list(self.search_config.keys()) |
44
|
|
|
self.n_models = len(self.model_list) |
45
|
|
|
|
46
|
|
|
self.set_n_jobs() |
47
|
|
|
self._n_process_range = range(0, int(self.n_jobs)) |
48
|
|
|
|
49
|
|
|
if self.max_time: |
50
|
|
|
self.max_time = self.max_time * 3600 |
51
|
|
|
|
52
|
|
|
def _set_general_args(self, kwargs_base): |
53
|
|
|
self.n_iter = kwargs_base["n_iter"] |
54
|
|
|
self.max_time = kwargs_base["max_time"] |
55
|
|
|
self.optimizer = kwargs_base["optimizer"] |
56
|
|
|
self.n_jobs = kwargs_base["n_jobs"] |
57
|
|
|
self.verbosity = kwargs_base["verbosity"] |
58
|
|
|
self.warnings = kwargs_base["warnings"] |
59
|
|
|
self.random_state = kwargs_base["random_state"] |
60
|
|
|
self.warm_start = kwargs_base["warm_start"] |
61
|
|
|
self.memory = kwargs_base["memory"] |
62
|
|
|
self.scatter_init = kwargs_base["scatter_init"] |
63
|
|
|
self.meta_learn = kwargs_base["meta_learn"] |
64
|
|
|
self.get_search_path = kwargs_base["get_search_path"] |
65
|
|
|
|
66
|
|
|
def _set_random_seed(self, thread=0): |
67
|
|
|
"""Sets the random seed separately for each thread (to avoid getting the same results in each thread)""" |
68
|
|
|
if self.random_state: |
69
|
|
|
rand = int(self.random_state) |
70
|
|
|
else: |
71
|
|
|
rand = 0 |
72
|
|
|
|
73
|
|
|
random.seed(rand + thread) |
74
|
|
|
np.random.seed(rand + thread) |
75
|
|
|
|
76
|
|
|
def set_n_jobs(self): |
77
|
|
|
"""Sets the number of jobs to run in parallel""" |
78
|
|
|
num_cores = multiprocessing.cpu_count() |
79
|
|
|
if self.n_jobs == -1 or self.n_jobs > num_cores: |
80
|
|
|
self.n_jobs = num_cores |
81
|
|
|
|