1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
import warnings |
7
|
|
|
|
8
|
|
|
from .main_args import MainArgs |
9
|
|
|
from .opt_args import Arguments |
10
|
|
|
|
11
|
|
|
from . import ( |
12
|
|
|
HillClimbingOptimizer, |
13
|
|
|
StochasticHillClimbingOptimizer, |
14
|
|
|
TabuOptimizer, |
15
|
|
|
RandomSearchOptimizer, |
16
|
|
|
RandomRestartHillClimbingOptimizer, |
17
|
|
|
RandomAnnealingOptimizer, |
18
|
|
|
SimulatedAnnealingOptimizer, |
19
|
|
|
StochasticTunnelingOptimizer, |
20
|
|
|
ParallelTemperingOptimizer, |
21
|
|
|
ParticleSwarmOptimizer, |
22
|
|
|
EvolutionStrategyOptimizer, |
23
|
|
|
BayesianOptimizer, |
24
|
|
|
) |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
def stop_warnings(): |
28
|
|
|
# because sklearn warnings are annoying when they appear 100 times |
29
|
|
|
def warn(*args, **kwargs): |
30
|
|
|
pass |
31
|
|
|
|
32
|
|
|
import warnings |
33
|
|
|
|
34
|
|
|
warnings.warn = warn |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
class Hyperactive: |
38
|
|
|
def __init__(self, X, y, memory="long", random_state=1, verbosity=3, warnings=False): |
39
|
|
|
self.X = X |
40
|
|
|
self._main_args_ = MainArgs(X, y, memory, random_state, verbosity) |
41
|
|
|
|
42
|
|
|
if not warnings: |
43
|
|
|
stop_warnings() |
44
|
|
|
|
45
|
|
|
self.optimizer_dict = { |
46
|
|
|
"HillClimbing": HillClimbingOptimizer, |
47
|
|
|
"StochasticHillClimbing": StochasticHillClimbingOptimizer, |
48
|
|
|
"TabuSearch": TabuOptimizer, |
49
|
|
|
"RandomSearch": RandomSearchOptimizer, |
50
|
|
|
"RandomRestartHillClimbing": RandomRestartHillClimbingOptimizer, |
51
|
|
|
"RandomAnnealing": RandomAnnealingOptimizer, |
52
|
|
|
"SimulatedAnnealing": SimulatedAnnealingOptimizer, |
53
|
|
|
"StochasticTunneling": StochasticTunnelingOptimizer, |
54
|
|
|
"ParallelTempering": ParallelTemperingOptimizer, |
55
|
|
|
"ParticleSwarm": ParticleSwarmOptimizer, |
56
|
|
|
"EvolutionStrategy": EvolutionStrategyOptimizer, |
57
|
|
|
"Bayesian": BayesianOptimizer, |
58
|
|
|
} |
59
|
|
|
|
60
|
|
|
def search( |
61
|
|
|
self, |
62
|
|
|
search_config, |
63
|
|
|
n_iter=10, |
64
|
|
|
max_time=None, |
65
|
|
|
optimizer="RandomSearch", |
66
|
|
|
n_jobs=1, |
67
|
|
|
init_config=None, |
68
|
|
|
): |
69
|
|
|
|
70
|
|
|
start_time = time.time() |
71
|
|
|
|
72
|
|
|
self._main_args_.search_args( |
73
|
|
|
search_config, max_time, n_iter, optimizer, n_jobs, init_config |
74
|
|
|
) |
75
|
|
|
self._opt_args_ = Arguments(self._main_args_.opt_para) |
76
|
|
|
optimizer_class = self.optimizer_dict[self._main_args_.optimizer] |
77
|
|
|
|
78
|
|
|
try: |
79
|
|
|
import ray |
80
|
|
|
|
81
|
|
|
if ray.is_initialized(): |
82
|
|
|
ray_ = True |
83
|
|
|
else: |
84
|
|
|
ray_ = False |
85
|
|
|
except ImportError: |
86
|
|
|
warnings.warn("failed to import ray", ImportWarning) |
87
|
|
|
ray_ = False |
88
|
|
|
|
89
|
|
|
if ray_: |
90
|
|
|
optimizer_class = ray.remote(optimizer_class) |
91
|
|
|
opts = [ |
92
|
|
|
optimizer_class.remote(self._main_args_, self._opt_args_) |
93
|
|
|
for job in range(self._main_args_.n_jobs) |
94
|
|
|
] |
95
|
|
|
searches = [ |
96
|
|
|
opt.search.remote(job, ray_=ray_) for job, opt in enumerate(opts) |
97
|
|
|
] |
98
|
|
|
ray.get(searches) |
99
|
|
|
else: |
100
|
|
|
self._optimizer_ = optimizer_class(self._main_args_, self._opt_args_) |
101
|
|
|
self._optimizer_.search() |
102
|
|
|
|
103
|
|
|
self.results_params = self._optimizer_.results_params |
104
|
|
|
self.results_models = self._optimizer_.results_models |
105
|
|
|
|
106
|
|
|
self.pos_list = self._optimizer_.pos_list |
107
|
|
|
self.score_list = self._optimizer_.score_list |
108
|
|
|
|
109
|
|
|
self.eval_time = self._optimizer_.eval_time |
110
|
|
|
self.total_time = time.time() - start_time |
111
|
|
|
|