1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import os |
6
|
|
|
import time |
7
|
|
|
import numpy as np |
8
|
|
|
|
9
|
|
|
from .search_space import SearchSpace |
10
|
|
|
from .model import Model |
11
|
|
|
from .init_position import InitSearchPosition |
12
|
|
|
|
13
|
|
|
from hypermemory import Hypermemory |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
def meta_data_path(): |
17
|
|
|
current_path = os.path.realpath(__file__) |
18
|
|
|
return current_path.rsplit("/", 1)[0] + "/meta_data/" |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
class ShortTermMemory: |
22
|
|
|
def __init__(self, _space_, _main_args_, _cand_): |
23
|
|
|
self._space_ = _space_ |
24
|
|
|
self._main_args_ = _main_args_ |
25
|
|
|
|
26
|
|
|
self.pos_best = None |
27
|
|
|
self.score_best = -np.inf |
28
|
|
|
|
29
|
|
|
self.memory_type = _main_args_.memory |
30
|
|
|
self.memory_dict = {} |
31
|
|
|
self.memory_dict_new = {} |
32
|
|
|
|
33
|
|
|
self.meta_data_found = False |
34
|
|
|
|
35
|
|
|
self.n_dims = None |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
class Candidate: |
39
|
|
|
def __init__(self, nth_process, _main_args_, _info_): |
40
|
|
|
self.start_time = time.time() |
41
|
|
|
self.i = 0 |
42
|
|
|
self._main_args_ = _main_args_ |
43
|
|
|
self.memory = _main_args_.memory |
44
|
|
|
|
45
|
|
|
self.memory_dict = {} |
46
|
|
|
self.memory_dict_new = {} |
47
|
|
|
|
48
|
|
|
self._info_ = _info_() |
49
|
|
|
|
50
|
|
|
self._score_best = -np.inf |
51
|
|
|
self.pos_best = None |
52
|
|
|
self.model = None |
53
|
|
|
|
54
|
|
|
self.nth_process = nth_process |
55
|
|
|
model_nr = nth_process % _main_args_.n_models |
56
|
|
|
self.func_ = list(_main_args_.search_config.keys())[model_nr] |
57
|
|
|
self.search_space = _main_args_.search_config[self.func_] |
58
|
|
|
|
59
|
|
|
self._space_ = SearchSpace(_main_args_, model_nr) |
60
|
|
|
self.func_name = str(self.func_).split(" ")[1] |
61
|
|
|
self._model_ = Model(self.func_, nth_process, _main_args_) |
62
|
|
|
self._init_ = InitSearchPosition(self._space_, self._model_, _main_args_) |
63
|
|
|
|
64
|
|
|
self.eval_time = [] |
65
|
|
|
self.iter_times = [] |
66
|
|
|
|
67
|
|
|
if not self.memory: |
68
|
|
|
self.mem = None |
69
|
|
|
self.eval_pos = self.eval_pos_noMem |
70
|
|
|
|
71
|
|
|
self._init_eval() |
72
|
|
|
|
73
|
|
|
elif self.memory == "short": |
74
|
|
|
self.mem = None |
75
|
|
|
self.eval_pos = self.eval_pos_Mem |
76
|
|
|
|
77
|
|
|
self._init_eval() |
78
|
|
|
|
79
|
|
|
elif self.memory == "long": |
80
|
|
|
self.mem = Hypermemory( |
81
|
|
|
_main_args_.X, |
82
|
|
|
_main_args_.y, |
83
|
|
|
self.func_, |
84
|
|
|
self.search_space, |
85
|
|
|
path=meta_data_path(), |
86
|
|
|
) |
87
|
|
|
self.eval_pos = self.eval_pos_Mem |
88
|
|
|
|
89
|
|
|
self.memory_dict = self.mem.load() |
90
|
|
|
|
91
|
|
|
else: |
92
|
|
|
print("Warning: Memory not defined") |
93
|
|
|
self.mem = None |
94
|
|
|
self.eval_pos = self.eval_pos_noMem |
95
|
|
|
|
96
|
|
|
self._init_eval() |
97
|
|
|
|
98
|
|
|
if self.mem: |
99
|
|
|
if self.mem.meta_data_found: |
100
|
|
|
self.pos_best = self.mem.pos_best |
101
|
|
|
self.score_best = self.mem.score_best |
102
|
|
|
else: |
103
|
|
|
self._init_eval() |
104
|
|
|
|
105
|
|
|
def _init_eval(self): |
106
|
|
|
self.pos_best = self._init_._set_start_pos(self._info_) |
107
|
|
|
self.score_best = self.eval_pos(self.pos_best) |
108
|
|
|
|
109
|
|
|
def _get_warm_start(self): |
110
|
|
|
return self._space_.pos2para(self.pos_best) |
111
|
|
|
|
112
|
|
|
def _process_results(self): |
113
|
|
|
self.total_time = time.time() - self.start_time |
114
|
|
|
start_point = self._info_.print_start_point(self) |
115
|
|
|
|
116
|
|
|
if self._main_args_.memory == "long": |
117
|
|
|
self.mem.dump(self.memory_dict_new, main_args=self._main_args_) |
118
|
|
|
|
119
|
|
|
return start_point |
120
|
|
|
|
121
|
|
|
@property |
122
|
|
|
def score_best(self): |
123
|
|
|
return self._score_best |
124
|
|
|
|
125
|
|
|
@score_best.setter |
126
|
|
|
def score_best(self, value): |
127
|
|
|
self.model_best = self.model |
128
|
|
|
self._score_best = value |
129
|
|
|
|
130
|
|
|
def base_eval(self, pos): |
131
|
|
|
para = self._space_.pos2para(pos) |
132
|
|
|
para["iteration"] = self.i |
133
|
|
|
results = self._model_.train_model(para) |
134
|
|
|
self.eval_time.append(results["eval_time"]) |
135
|
|
|
|
136
|
|
|
return results |
137
|
|
|
|
138
|
|
|
def eval_pos_noMem(self, pos): |
139
|
|
|
results = self.base_eval(pos) |
140
|
|
|
return results["score"] |
141
|
|
|
|
142
|
|
|
def eval_pos_Mem(self, pos, force_eval=False): |
143
|
|
|
pos.astype(int) |
144
|
|
|
pos_str = pos.tostring() |
145
|
|
|
|
146
|
|
|
if pos_str in self.memory_dict and not force_eval: |
147
|
|
|
return self.memory_dict[pos_str]["score"] |
148
|
|
|
else: |
149
|
|
|
results = self.base_eval(pos) |
150
|
|
|
self.memory_dict[pos_str] = results |
151
|
|
|
self.memory_dict_new[pos_str] = results |
152
|
|
|
|
153
|
|
|
return results["score"] |
154
|
|
|
|