Total Complexity | 3 |
Total Lines | 51 |
Duplicated Lines | 19.61 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | from sklearn.datasets import load_iris |
||
6 | from sklearn.model_selection import cross_val_score |
||
7 | from sklearn.tree import DecisionTreeClassifier |
||
8 | from hyperactive import Hyperactive |
||
9 | from hyperactive import MetaLearn |
||
10 | |||
11 | data = load_iris() |
||
12 | X = data.data |
||
13 | y = data.target |
||
14 | |||
15 | |||
16 | View Code Duplication | def model(para, X_train, y_train): |
|
|
|||
17 | model = DecisionTreeClassifier( |
||
18 | criterion=para["criterion"], |
||
19 | max_depth=para["max_depth"], |
||
20 | min_samples_split=para["min_samples_split"], |
||
21 | min_samples_leaf=para["min_samples_leaf"], |
||
22 | ) |
||
23 | scores = cross_val_score(model, X_train, y_train, cv=3) |
||
24 | |||
25 | return scores.mean(), model |
||
26 | |||
27 | |||
28 | search_config = { |
||
29 | model: { |
||
30 | "criterion": ["gini", "entropy"], |
||
31 | "max_depth": range(1, 21), |
||
32 | "min_samples_split": range(2, 21), |
||
33 | "min_samples_leaf": range(1, 21), |
||
34 | } |
||
35 | } |
||
36 | |||
37 | |||
38 | def test_metalearn(): |
||
39 | ml = MetaLearn(search_config) |
||
40 | ml.collect(X, y) |
||
41 | # ml.train() |
||
42 | # ml.search(X, y) |
||
43 | |||
44 | |||
45 | def test_metalearn1(): |
||
46 | opt = Hyperactive(search_config, meta_learn=True) |
||
47 | opt.fit(X, y) |
||
48 | |||
49 | |||
50 | test_metalearn() |
||
51 |