1
|
|
|
"""CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimizer.""" |
2
|
|
|
# copyright: hyperactive developers, MIT License (see LICENSE file) |
3
|
|
|
|
4
|
|
|
from .._adapters._base_optuna_adapter import _BaseOptunaAdapter |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
class CmaEsOptimizer(_BaseOptunaAdapter): |
8
|
|
|
"""CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimizer. |
9
|
|
|
|
10
|
|
|
Parameters |
11
|
|
|
---------- |
12
|
|
|
param_space : dict[str, tuple or list or optuna distributions] |
13
|
|
|
The search space to explore. Dictionary with parameter names |
14
|
|
|
as keys and either tuples/lists of (low, high) or |
15
|
|
|
optuna distribution objects as values. |
16
|
|
|
n_trials : int, default=100 |
17
|
|
|
Number of optimization trials. |
18
|
|
|
initialize : dict[str, int], default=None |
19
|
|
|
The method to generate initial positions. A dictionary with |
20
|
|
|
the following key literals and the corresponding value type: |
21
|
|
|
{"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
22
|
|
|
random_state : None, int, default=None |
23
|
|
|
If None, create a new random state. If int, create a new random state |
24
|
|
|
seeded with the value. |
25
|
|
|
early_stopping : int, default=None |
26
|
|
|
Number of trials after which to stop if no improvement. |
27
|
|
|
max_score : float, default=None |
28
|
|
|
Maximum score threshold. Stop optimization when reached. |
29
|
|
|
x0 : dict, default=None |
30
|
|
|
Initial parameter values for CMA-ES. |
31
|
|
|
sigma0 : float, default=1.0 |
32
|
|
|
Initial standard deviation for CMA-ES. |
33
|
|
|
n_startup_trials : int, default=1 |
34
|
|
|
Number of startup trials for CMA-ES. |
35
|
|
|
experiment : BaseExperiment, optional |
36
|
|
|
The experiment to optimize parameters for. |
37
|
|
|
Optional, can be passed later via ``set_params``. |
38
|
|
|
|
39
|
|
|
Examples |
40
|
|
|
-------- |
41
|
|
|
Basic usage of CmaEsOptimizer with a scikit-learn experiment: |
42
|
|
|
|
43
|
|
|
>>> from hyperactive.experiment.integrations import SklearnCvExperiment |
44
|
|
|
>>> from hyperactive.opt.optuna import CmaEsOptimizer |
45
|
|
|
>>> from sklearn.datasets import load_iris |
46
|
|
|
>>> from sklearn.svm import SVC |
47
|
|
|
>>> X, y = load_iris(return_X_y=True) |
48
|
|
|
>>> sklearn_exp = SklearnCvExperiment(estimator=SVC(), X=X, y=y) |
49
|
|
|
>>> param_space = { |
50
|
|
|
... "C": (0.01, 10), |
51
|
|
|
... "gamma": (0.0001, 10), |
52
|
|
|
... } |
53
|
|
|
>>> optimizer = CmaEsOptimizer( |
54
|
|
|
... param_space=param_space, n_trials=50, experiment=sklearn_exp |
55
|
|
|
... ) |
56
|
|
|
>>> best_params = optimizer.run() |
57
|
|
|
""" |
58
|
|
|
|
59
|
|
|
_tags = { |
60
|
|
|
"info:name": "CMA-ES Optimizer", |
61
|
|
|
"info:local_vs_global": "global", |
62
|
|
|
"info:explore_vs_exploit": "mixed", |
63
|
|
|
"info:compute": "high", |
64
|
|
|
"python_dependencies": ["optuna", "cmaes"], |
65
|
|
|
} |
66
|
|
|
|
67
|
|
|
def __init__( |
68
|
|
|
self, |
69
|
|
|
param_space=None, |
70
|
|
|
n_trials=100, |
71
|
|
|
initialize=None, |
72
|
|
|
random_state=None, |
73
|
|
|
early_stopping=None, |
74
|
|
|
max_score=None, |
75
|
|
|
x0=None, |
76
|
|
|
sigma0=1.0, |
77
|
|
|
n_startup_trials=1, |
78
|
|
|
experiment=None, |
79
|
|
|
): |
80
|
|
|
self.x0 = x0 |
81
|
|
|
self.sigma0 = sigma0 |
82
|
|
|
self.n_startup_trials = n_startup_trials |
83
|
|
|
|
84
|
|
|
super().__init__( |
85
|
|
|
param_space=param_space, |
86
|
|
|
n_trials=n_trials, |
87
|
|
|
initialize=initialize, |
88
|
|
|
random_state=random_state, |
89
|
|
|
early_stopping=early_stopping, |
90
|
|
|
max_score=max_score, |
91
|
|
|
experiment=experiment, |
92
|
|
|
) |
93
|
|
|
|
94
|
|
|
def _get_optimizer(self): |
95
|
|
|
"""Get the CMA-ES optimizer. |
96
|
|
|
|
97
|
|
|
Returns |
98
|
|
|
------- |
99
|
|
|
optimizer |
100
|
|
|
The Optuna CmaEsOptimizer instance |
101
|
|
|
""" |
102
|
|
|
import optuna |
103
|
|
|
|
104
|
|
|
try: |
105
|
|
|
import cmaes # noqa: F401 |
106
|
|
|
except ImportError: |
107
|
|
|
raise ImportError( |
108
|
|
|
"CmaEsOptimizer requires the 'cmaes' package. " |
109
|
|
|
"Install it with: pip install cmaes" |
110
|
|
|
) |
111
|
|
|
|
112
|
|
|
optimizer_kwargs = { |
113
|
|
|
"sigma0": self.sigma0, |
114
|
|
|
"n_startup_trials": self.n_startup_trials, |
115
|
|
|
} |
116
|
|
|
|
117
|
|
|
if self.x0 is not None: |
118
|
|
|
optimizer_kwargs["x0"] = self.x0 |
119
|
|
|
|
120
|
|
|
if self.random_state is not None: |
121
|
|
|
optimizer_kwargs["seed"] = self.random_state |
122
|
|
|
|
123
|
|
|
return optuna.samplers.CmaEsSampler(**optimizer_kwargs) |
124
|
|
|
|
125
|
|
|
@classmethod |
126
|
|
|
def get_test_params(cls, parameter_set="default"): |
127
|
|
|
"""Return testing parameter settings for the optimizer.""" |
128
|
|
|
from sklearn.datasets import make_regression |
129
|
|
|
from sklearn.neural_network import MLPRegressor |
130
|
|
|
|
131
|
|
|
from hyperactive.experiment.integrations import SklearnCvExperiment |
132
|
|
|
|
133
|
|
|
# Test case 1: Basic continuous parameters (from base) |
134
|
|
|
params = super().get_test_params(parameter_set) |
135
|
|
|
params[0].update( |
136
|
|
|
{ |
137
|
|
|
"sigma0": 0.5, |
138
|
|
|
"n_startup_trials": 1, |
139
|
|
|
} |
140
|
|
|
) |
141
|
|
|
|
142
|
|
|
# Test case 2: Neural network with continuous parameters only |
143
|
|
|
# (CMA-ES specific - only continuous parameters allowed) |
144
|
|
|
X, y = make_regression(n_samples=50, n_features=5, noise=0.1, random_state=42) |
145
|
|
|
mlp_exp = SklearnCvExperiment( |
146
|
|
|
estimator=MLPRegressor(random_state=42, max_iter=100), X=X, y=y, cv=3 |
147
|
|
|
) |
148
|
|
|
|
149
|
|
|
continuous_param_space = { |
150
|
|
|
"alpha": (1e-5, 1e-1), # L2 regularization (continuous) |
151
|
|
|
"learning_rate_init": (1e-4, 1e-1), # Learning rate (continuous) |
152
|
|
|
"beta_1": (0.8, 0.99), # Adam beta1 (continuous) |
153
|
|
|
"beta_2": (0.9, 0.999), # Adam beta2 (continuous) |
154
|
|
|
# Note: No categorical parameters - CMA-ES doesn't support them |
155
|
|
|
} |
156
|
|
|
|
157
|
|
|
params.append( |
158
|
|
|
{ |
159
|
|
|
"param_space": continuous_param_space, |
160
|
|
|
"n_trials": 8, # Smaller for faster testing |
161
|
|
|
"experiment": mlp_exp, |
162
|
|
|
"sigma0": 0.3, # Different sigma for diversity |
163
|
|
|
"n_startup_trials": 2, # More startup trials |
164
|
|
|
} |
165
|
|
|
) |
166
|
|
|
|
167
|
|
|
# Test case 3: High-dimensional continuous space (CMA-ES strength) |
168
|
|
|
high_dim_continuous = { |
169
|
|
|
f"x{i}": (-1.0, 1.0) |
170
|
|
|
for i in range(6) # 6D continuous optimization |
171
|
|
|
} |
172
|
|
|
|
173
|
|
|
params.append( |
174
|
|
|
{ |
175
|
|
|
"param_space": high_dim_continuous, |
176
|
|
|
"n_trials": 12, |
177
|
|
|
"experiment": mlp_exp, |
178
|
|
|
"sigma0": 0.7, # Larger initial spread |
179
|
|
|
"n_startup_trials": 3, |
180
|
|
|
} |
181
|
|
|
) |
182
|
|
|
|
183
|
|
|
return params |
184
|
|
|
|