1
|
|
|
""" |
2
|
|
|
GridSampler Example - Exhaustive Grid Search |
3
|
|
|
|
4
|
|
|
The GridSampler performs exhaustive search over a discretized parameter grid. |
5
|
|
|
It systematically evaluates every combination of specified parameter values, |
6
|
|
|
ensuring complete coverage but potentially requiring many evaluations. |
7
|
|
|
|
8
|
|
|
Characteristics: |
9
|
|
|
- Exhaustive search over predefined parameter grids |
10
|
|
|
- Systematic and reproducible exploration |
11
|
|
|
- Guarantees finding the best combination within the grid |
12
|
|
|
- No learning or adaptation |
13
|
|
|
- Best for small, discrete parameter spaces |
14
|
|
|
- Interpretable and deterministic results |
15
|
|
|
""" |
16
|
|
|
|
17
|
|
|
import numpy as np |
18
|
|
|
from sklearn.datasets import load_iris |
19
|
|
|
from sklearn.neighbors import KNeighborsClassifier |
20
|
|
|
from sklearn.model_selection import cross_val_score |
21
|
|
|
|
22
|
|
|
from hyperactive.experiment.integrations import SklearnCvExperiment |
23
|
|
|
from hyperactive.opt.optuna import GridSampler |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def grid_search_theory(): |
27
|
|
|
"""Explain grid search methodology.""" |
28
|
|
|
# Grid Search Methodology: |
29
|
|
|
# |
30
|
|
|
# 1. Parameter Discretization: |
31
|
|
|
# - Each continuous parameter divided into discrete levels |
32
|
|
|
# - Categorical parameters use all specified values |
33
|
|
|
# - Creates n₁ × n₂ × ... × nₖ total combinations |
34
|
|
|
# |
35
|
|
|
# 2. Systematic Evaluation: |
36
|
|
|
# - Every combination evaluated exactly once |
37
|
|
|
# - No randomness or learning involved |
38
|
|
|
# - Order of evaluation is deterministic |
39
|
|
|
# |
40
|
|
|
# 3. Optimality Guarantees: |
41
|
|
|
# - Finds global optimum within the discrete grid |
42
|
|
|
# - Quality depends on grid resolution |
43
|
|
|
# - May miss optimal values between grid points |
44
|
|
|
# |
45
|
|
|
# 4. Computational Complexity: |
46
|
|
|
# - Exponential growth with number of parameters |
47
|
|
|
# - Curse of dimensionality for many parameters |
48
|
|
|
# - Embarrassingly parallel |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
def demonstrate_curse_of_dimensionality(): |
52
|
|
|
"""Show how grid search scales with dimensions.""" |
53
|
|
|
# Grid Search Scaling (Curse of Dimensionality): |
54
|
|
|
# |
55
|
|
|
# scenarios = [ |
56
|
|
|
# (2, 5, "2 parameters × 5 values each"), |
57
|
|
|
# (3, 5, "3 parameters × 5 values each"), |
58
|
|
|
# (4, 5, "4 parameters × 5 values each"), |
59
|
|
|
# (5, 10, "5 parameters × 10 values each"), |
60
|
|
|
# (10, 3, "10 parameters × 3 values each"), |
61
|
|
|
# ] |
62
|
|
|
# |
63
|
|
|
# for n_params, n_values, description in scenarios: |
64
|
|
|
# total_combinations = n_values ** n_params |
65
|
|
|
# print(f" {description}: {total_combinations:,} combinations") |
66
|
|
|
# |
67
|
|
|
# → Grid search works best with small parameter spaces! |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
def main(): |
71
|
|
|
# === GridSampler Example === |
72
|
|
|
# Exhaustive Grid Search |
73
|
|
|
|
74
|
|
|
grid_search_theory() |
75
|
|
|
demonstrate_curse_of_dimensionality() |
76
|
|
|
|
77
|
|
|
# Load dataset - simple classification |
78
|
|
|
X, y = load_iris(return_X_y=True) |
79
|
|
|
print(f"Dataset: Iris classification ({X.shape[0]} samples, {X.shape[1]} features)") |
80
|
|
|
|
81
|
|
|
# Create experiment |
82
|
|
|
estimator = KNeighborsClassifier() |
83
|
|
|
experiment = SklearnCvExperiment(estimator=estimator, X=X, y=y, cv=5) |
84
|
|
|
|
85
|
|
|
# Define search space - DISCRETE values only for grid search |
86
|
|
|
param_space = { |
87
|
|
|
"n_neighbors": [1, 3, 5, 7, 11, 15, 21], # 7 values |
88
|
|
|
"weights": ["uniform", "distance"], # 2 values |
89
|
|
|
"metric": ["euclidean", "manhattan", "minkowski"], # 3 values |
90
|
|
|
"p": [1, 2], # Only relevant for minkowski metric # 2 values |
91
|
|
|
} |
92
|
|
|
|
93
|
|
|
# Total combinations: 7 × 2 × 3 × 2 = 84 combinations |
94
|
|
|
total_combinations = 1 |
95
|
|
|
for param, values in param_space.items(): |
96
|
|
|
total_combinations *= len(values) |
97
|
|
|
|
98
|
|
|
# Search Space (Discrete grids only): |
99
|
|
|
# for param, values in param_space.items(): |
100
|
|
|
# print(f" {param}: {values} ({len(values)} values)") |
101
|
|
|
# Total combinations: calculated above |
102
|
|
|
|
103
|
|
|
# Configure GridSampler |
104
|
|
|
optimizer = GridSampler( |
105
|
|
|
param_space=param_space, |
106
|
|
|
n_trials=total_combinations, # Will evaluate all combinations |
107
|
|
|
random_state=42, # For deterministic ordering |
108
|
|
|
experiment=experiment, |
109
|
|
|
) |
110
|
|
|
|
111
|
|
|
# GridSampler Configuration: |
112
|
|
|
# n_trials: matches total combinations |
113
|
|
|
# search_space: automatically derived from param_space |
114
|
|
|
# Systematic evaluation of every combination |
115
|
|
|
|
116
|
|
|
# Run optimization |
117
|
|
|
# Running exhaustive grid search... |
118
|
|
|
best_params = optimizer.run() |
119
|
|
|
|
120
|
|
|
# Results |
121
|
|
|
print("\n=== Results ===") |
122
|
|
|
print(f"Best parameters: {best_params}") |
123
|
|
|
print(f"Best score: {optimizer.best_score_:.4f}") |
124
|
|
|
print() |
125
|
|
|
|
126
|
|
|
# Grid Search Characteristics: |
127
|
|
|
# |
128
|
|
|
# Exhaustive Coverage: |
129
|
|
|
# - Evaluated all parameter combinations |
130
|
|
|
# - Guaranteed to find best configuration within grid |
131
|
|
|
# - No risk of missing good regions |
132
|
|
|
|
133
|
|
|
# Reproducibility: |
134
|
|
|
# - Same grid → same results every time |
135
|
|
|
# - Deterministic evaluation order |
136
|
|
|
# - No randomness or hyperparameters |
137
|
|
|
|
138
|
|
|
# Interpretability: |
139
|
|
|
# - Easy to understand methodology |
140
|
|
|
# - Clear relationship between grid density and accuracy |
141
|
|
|
# - Results easily visualized and analyzed |
142
|
|
|
|
143
|
|
|
# Grid Design Considerations: |
144
|
|
|
# |
145
|
|
|
# Parameter Value Selection: |
146
|
|
|
# Include reasonable ranges for each parameter |
147
|
|
|
# Use domain knowledge to choose meaningful values |
148
|
|
|
# Consider logarithmic spacing for scale-sensitive parameters |
149
|
|
|
# Start coarse, then refine around promising regions |
150
|
|
|
# |
151
|
|
|
# Computational Budget: |
152
|
|
|
# Balance grid density with available compute |
153
|
|
|
# Consider parallel evaluation to speed up |
154
|
|
|
# Use coarse grids for initial exploration |
155
|
|
|
# |
156
|
|
|
# Best Use Cases: |
157
|
|
|
# Small parameter spaces (< 6 parameters) |
158
|
|
|
# Discrete/categorical parameters |
159
|
|
|
# When exhaustive evaluation is feasible |
160
|
|
|
# Baseline comparison for other methods |
161
|
|
|
# When interpretability is crucial |
162
|
|
|
# Parallel computing environments |
163
|
|
|
# |
164
|
|
|
# Limitations: |
165
|
|
|
# Exponential scaling with parameter count |
166
|
|
|
# May miss optimal values between grid points |
167
|
|
|
# Inefficient for continuous parameters |
168
|
|
|
# No adaptive learning or focusing |
169
|
|
|
# Can waste evaluations in clearly bad regions |
170
|
|
|
# |
171
|
|
|
# Grid Search vs Other Methods: |
172
|
|
|
# |
173
|
|
|
# vs Random Search: |
174
|
|
|
# + Systematic coverage guarantee |
175
|
|
|
# + Reproducible results |
176
|
|
|
# - Exponential scaling |
177
|
|
|
# - Less efficient in high dimensions |
178
|
|
|
# |
179
|
|
|
# vs Bayesian Optimization: |
180
|
|
|
# + No assumptions about objective function |
181
|
|
|
# + Guaranteed to find grid optimum |
182
|
|
|
# - Much less sample efficient |
183
|
|
|
# - No learning from previous evaluations |
184
|
|
|
|
185
|
|
|
return best_params, optimizer.best_score_ |
186
|
|
|
|
187
|
|
|
|
188
|
|
|
if __name__ == "__main__": |
189
|
|
|
best_params, best_score = main() |
190
|
|
|
|