1
|
|
|
"""TPE (Tree-structured Parzen Estimator) optimizer.""" |
2
|
|
|
# copyright: hyperactive developers, MIT License (see LICENSE file) |
3
|
|
|
|
4
|
|
|
from .._adapters._base_optuna_adapter import _BaseOptunaAdapter |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
class TPEOptimizer(_BaseOptunaAdapter): |
8
|
|
|
"""Tree-structured Parzen Estimator optimizer. |
9
|
|
|
|
10
|
|
|
Parameters |
11
|
|
|
---------- |
12
|
|
|
param_space : dict[str, tuple or list or optuna distributions] |
13
|
|
|
The search space to explore. Dictionary with parameter names |
14
|
|
|
as keys and either tuples/lists of (low, high) or |
15
|
|
|
optuna distribution objects as values. |
16
|
|
|
n_trials : int, default=100 |
17
|
|
|
Number of optimization trials. |
18
|
|
|
initialize : dict[str, int], default=None |
19
|
|
|
The method to generate initial positions. A dictionary with |
20
|
|
|
the following key literals and the corresponding value type: |
21
|
|
|
{"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
22
|
|
|
random_state : None, int, default=None |
23
|
|
|
If None, create a new random state. If int, create a new random state |
24
|
|
|
seeded with the value. |
25
|
|
|
early_stopping : int, default=None |
26
|
|
|
Number of trials after which to stop if no improvement. |
27
|
|
|
max_score : float, default=None |
28
|
|
|
Maximum score threshold. Stop optimization when reached. |
29
|
|
|
n_startup_trials : int, default=10 |
30
|
|
|
Number of startup trials for TPE. |
31
|
|
|
n_ei_candidates : int, default=24 |
32
|
|
|
Number of candidates for expected improvement. |
33
|
|
|
weights : callable, default=None |
34
|
|
|
Weight function for TPE. |
35
|
|
|
experiment : BaseExperiment, optional |
36
|
|
|
The experiment to optimize parameters for. |
37
|
|
|
Optional, can be passed later via ``set_params``. |
38
|
|
|
|
39
|
|
|
Examples |
40
|
|
|
-------- |
41
|
|
|
Basic usage of TPEOptimizer with a scikit-learn experiment: |
42
|
|
|
|
43
|
|
|
>>> from hyperactive.experiment.integrations import SklearnCvExperiment |
44
|
|
|
>>> from hyperactive.opt.optuna import TPEOptimizer |
45
|
|
|
>>> from sklearn.datasets import load_iris |
46
|
|
|
>>> from sklearn.svm import SVC |
47
|
|
|
>>> X, y = load_iris(return_X_y=True) |
48
|
|
|
>>> sklearn_exp = SklearnCvExperiment(estimator=SVC(), X=X, y=y) |
49
|
|
|
>>> param_space = { |
50
|
|
|
... "C": (0.01, 10), |
51
|
|
|
... "gamma": (0.0001, 10), |
52
|
|
|
... } |
53
|
|
|
>>> optimizer = TPEOptimizer( |
54
|
|
|
... param_space=param_space, n_trials=50, experiment=sklearn_exp |
55
|
|
|
... ) |
56
|
|
|
>>> best_params = optimizer.run() |
57
|
|
|
""" |
58
|
|
|
|
59
|
|
|
_tags = { |
60
|
|
|
"info:name": "Tree-structured Parzen Estimator", |
61
|
|
|
"info:local_vs_global": "global", |
62
|
|
|
"info:explore_vs_exploit": "exploit", |
63
|
|
|
"info:compute": "middle", |
64
|
|
|
"python_dependencies": ["optuna"], |
65
|
|
|
} |
66
|
|
|
|
67
|
|
|
def __init__( |
68
|
|
|
self, |
69
|
|
|
param_space=None, |
70
|
|
|
n_trials=100, |
71
|
|
|
initialize=None, |
72
|
|
|
random_state=None, |
73
|
|
|
early_stopping=None, |
74
|
|
|
max_score=None, |
75
|
|
|
n_startup_trials=10, |
76
|
|
|
n_ei_candidates=24, |
77
|
|
|
weights=None, |
78
|
|
|
experiment=None, |
79
|
|
|
): |
80
|
|
|
self.n_startup_trials = n_startup_trials |
81
|
|
|
self.n_ei_candidates = n_ei_candidates |
82
|
|
|
self.weights = weights |
83
|
|
|
|
84
|
|
|
super().__init__( |
85
|
|
|
param_space=param_space, |
86
|
|
|
n_trials=n_trials, |
87
|
|
|
initialize=initialize, |
88
|
|
|
random_state=random_state, |
89
|
|
|
early_stopping=early_stopping, |
90
|
|
|
max_score=max_score, |
91
|
|
|
experiment=experiment, |
92
|
|
|
) |
93
|
|
|
|
94
|
|
|
def _get_optimizer(self): |
95
|
|
|
"""Get the TPE optimizer. |
96
|
|
|
|
97
|
|
|
Returns |
98
|
|
|
------- |
99
|
|
|
optimizer |
100
|
|
|
The Optuna TPEOptimizer instance |
101
|
|
|
""" |
102
|
|
|
import optuna |
103
|
|
|
|
104
|
|
|
optimizer_kwargs = { |
105
|
|
|
"n_startup_trials": self.n_startup_trials, |
106
|
|
|
"n_ei_candidates": self.n_ei_candidates, |
107
|
|
|
} |
108
|
|
|
|
109
|
|
|
if self.weights is not None: |
110
|
|
|
optimizer_kwargs["weights"] = self.weights |
111
|
|
|
|
112
|
|
|
if self.random_state is not None: |
113
|
|
|
optimizer_kwargs["seed"] = self.random_state |
114
|
|
|
|
115
|
|
|
return optuna.samplers.TPESampler(**optimizer_kwargs) |
116
|
|
|
|
117
|
|
|
@classmethod |
118
|
|
|
def get_test_params(cls, parameter_set="default"): |
119
|
|
|
"""Return testing parameter settings for the optimizer.""" |
120
|
|
|
from sklearn.datasets import load_wine |
121
|
|
|
from sklearn.ensemble import RandomForestClassifier |
122
|
|
|
from sklearn.svm import SVC |
123
|
|
|
|
124
|
|
|
from hyperactive.experiment.integrations import SklearnCvExperiment |
125
|
|
|
|
126
|
|
|
# Test case 1: Basic TPE with standard parameters |
127
|
|
|
params = super().get_test_params(parameter_set) |
128
|
|
|
params[0].update( |
129
|
|
|
{ |
130
|
|
|
"n_startup_trials": 5, |
131
|
|
|
"n_ei_candidates": 12, |
132
|
|
|
} |
133
|
|
|
) |
134
|
|
|
|
135
|
|
|
# Test case 2: Mixed parameter types with warm start |
136
|
|
|
X, y = load_wine(return_X_y=True) |
137
|
|
|
rf_exp = SklearnCvExperiment( |
138
|
|
|
estimator=RandomForestClassifier(random_state=42), X=X, y=y |
139
|
|
|
) |
140
|
|
|
|
141
|
|
|
mixed_param_space = { |
142
|
|
|
"n_estimators": (10, 100), # Continuous integer |
143
|
|
|
"max_depth": [3, 5, 7, 10, None], # Mixed discrete/None |
144
|
|
|
"criterion": ["gini", "entropy"], # Categorical |
145
|
|
|
"min_samples_split": (2, 20), # Continuous integer |
146
|
|
|
"bootstrap": [True, False], # Boolean |
147
|
|
|
} |
148
|
|
|
|
149
|
|
|
# Warm start with known good configuration |
150
|
|
|
warm_start_points = [ |
151
|
|
|
{ |
152
|
|
|
"n_estimators": 50, |
153
|
|
|
"max_depth": 5, |
154
|
|
|
"criterion": "gini", |
155
|
|
|
"min_samples_split": 2, |
156
|
|
|
"bootstrap": True, |
157
|
|
|
} |
158
|
|
|
] |
159
|
|
|
|
160
|
|
|
params.append( |
161
|
|
|
{ |
162
|
|
|
"param_space": mixed_param_space, |
163
|
|
|
"n_trials": 20, |
164
|
|
|
"experiment": rf_exp, |
165
|
|
|
"n_startup_trials": 3, # Fewer random trials before TPE |
166
|
|
|
"n_ei_candidates": 24, # More EI candidates for better optimization |
167
|
|
|
"initialize": {"warm_start": warm_start_points}, |
168
|
|
|
} |
169
|
|
|
) |
170
|
|
|
|
171
|
|
|
# Test case 3: High-dimensional continuous space (TPE strength) |
172
|
|
|
svm_exp = SklearnCvExperiment(estimator=SVC(), X=X, y=y) |
173
|
|
|
high_dim_space = { |
174
|
|
|
"C": (0.01, 100), |
175
|
|
|
"gamma": (1e-6, 1e2), |
176
|
|
|
"coef0": (0.0, 10.0), |
177
|
|
|
"degree": (2, 5), |
178
|
|
|
"tol": (1e-5, 1e-2), |
179
|
|
|
} |
180
|
|
|
|
181
|
|
|
params.append( |
182
|
|
|
{ |
183
|
|
|
"param_space": high_dim_space, |
184
|
|
|
"n_trials": 25, |
185
|
|
|
"experiment": svm_exp, |
186
|
|
|
"n_startup_trials": 8, # More startup for exploration |
187
|
|
|
"n_ei_candidates": 32, # More candidates for complex space |
188
|
|
|
} |
189
|
|
|
) |
190
|
|
|
|
191
|
|
|
return params |
192
|
|
|
|