Conditions | 1 |
Total Lines | 32 |
Code Lines | 13 |
Lines | 32 |
Ratio | 100 % |
Changes | 0 |
1 | """Experiment adapter for sklearn cross-validation experiments.""" |
||
28 | View Code Duplication | def _score(self, **params): |
|
|
|||
29 | """Score the parameters. |
||
30 | |||
31 | Parameters |
||
32 | ---------- |
||
33 | params : dict with string keys |
||
34 | Parameters to score. |
||
35 | |||
36 | Returns |
||
37 | ------- |
||
38 | float |
||
39 | The score of the parameters. |
||
40 | dict |
||
41 | Additional metadata about the search. |
||
42 | """ |
||
43 | estimator = clone(self.estimator) |
||
44 | estimator.set_params(**params) |
||
45 | |||
46 | cv_results = cross_validate( |
||
47 | self.estimator, |
||
48 | self.X, |
||
49 | self.y, |
||
50 | cv=self.cv, |
||
51 | ) |
||
52 | |||
53 | add_info_d = { |
||
54 | "score_time": cv_results["score_time"], |
||
55 | "fit_time": cv_results["fit_time"], |
||
56 | "n_test_samples": _num_samples(self.X), |
||
57 | } |
||
58 | |||
59 | return cv_results["test_score"].mean(), add_info_d |
||
60 |