Completed
Push — master ( b24ce1...799a98 )
by Simon
04:22 queued 02:04
created

sklearn_example   A

Complexity

Total Complexity 1

Size/Duplication

Total Lines 32
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
wmc 1
eloc 21
dl 0
loc 32
rs 10
c 0
b 0
f 0

1 Function

Rating   Name   Duplication   Size   Complexity  
A model() 0 9 1
1
from sklearn.model_selection import cross_val_score
2
from sklearn.ensemble import GradientBoostingClassifier
3
from sklearn.datasets import load_breast_cancer
4
from hyperactive import Hyperactive
5
6
data = load_breast_cancer()
7
X, y = data.data, data.target
8
9
10
def model(para, X, y):
11
    model = GradientBoostingClassifier(
12
        n_estimators=para["n_estimators"],
13
        max_depth=para["max_depth"],
14
        min_samples_split=para["min_samples_split"],
15
    )
16
    scores = cross_val_score(model, X, y, cv=3)
17
18
    return scores.mean()
19
20
21
search_config = {
22
    model: {
23
        "n_estimators": range(10, 200, 10),
24
        "max_depth": range(2, 12),
25
        "min_samples_split": range(2, 12),
26
    }
27
}
28
29
30
opt = Hyperactive(search_config, n_iter=100)
31
opt.fit(X, y)
32