| Total Complexity | 1 | 
| Total Lines | 32 | 
| Duplicated Lines | 0 % | 
| Changes | 0 | ||
| 1 | from sklearn.model_selection import cross_val_score | ||
| 2 | from lightgbm import LGBMRegressor | ||
| 3 | from sklearn.datasets import load_breast_cancer | ||
| 4 | from hyperactive import Hyperactive | ||
| 5 | |||
| 6 | data = load_breast_cancer() | ||
| 7 | X, y = data.data, data.target | ||
| 8 | |||
| 9 | |||
| 10 | def model(para, X, y): | ||
| 11 | model = LGBMRegressor( | ||
| 12 | num_leaves=para["num_leaves"], | ||
| 13 | bagging_freq=para["bagging_freq"], | ||
| 14 | learning_rate=para["learning_rate"], | ||
| 15 | ) | ||
| 16 | scores = cross_val_score(model, X, y, cv=3) | ||
| 17 | |||
| 18 | return scores.mean() | ||
| 19 | |||
| 20 | |||
| 21 | search_config = { | ||
| 22 |     model: { | ||
| 23 | "num_leaves": range(2, 20), | ||
| 24 | "bagging_freq": range(2, 12), | ||
| 25 | "learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0], | ||
| 26 | } | ||
| 27 | } | ||
| 28 | |||
| 29 | |||
| 30 | opt = Hyperactive(search_config, n_iter=30) | ||
| 31 | opt.fit(X, y) | ||
| 32 |