| Conditions | 1 |
| Total Lines | 9 |
| Code Lines | 7 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
| 1 | from sklearn.model_selection import cross_val_score |
||
| 10 | def model(para, X, y): |
||
| 11 | model = GradientBoostingClassifier( |
||
| 12 | n_estimators=para["n_estimators"], |
||
| 13 | max_depth=para["max_depth"], |
||
| 14 | min_samples_split=para["min_samples_split"], |
||
| 15 | ) |
||
| 16 | scores = cross_val_score(model, X, y, cv=3) |
||
| 17 | |||
| 18 | return scores.mean() |
||
| 19 | |||
| 36 |