|
1
|
|
|
import numpy as np |
|
2
|
|
|
from hyperactive import Hyperactive |
|
3
|
|
|
from hyperactive.data_tools import DataCollector |
|
4
|
|
|
|
|
5
|
|
|
|
|
6
|
|
View Code Duplication |
def test_data_collector_0(): |
|
|
|
|
|
|
7
|
|
|
def objective_function(opt): |
|
8
|
|
|
score = -opt["x1"] * opt["x1"] |
|
9
|
|
|
return score |
|
10
|
|
|
|
|
11
|
|
|
search_space = { |
|
12
|
|
|
"x1": np.arange(-100, 101, 1), |
|
13
|
|
|
} |
|
14
|
|
|
|
|
15
|
|
|
hyper = Hyperactive() |
|
16
|
|
|
hyper.add_search(objective_function, search_space, n_iter=20) |
|
17
|
|
|
hyper.run() |
|
18
|
|
|
|
|
19
|
|
|
search_data = hyper.results(objective_function) |
|
20
|
|
|
|
|
21
|
|
|
data_c = DataCollector("./search_data.csv") |
|
22
|
|
|
data_c.save(search_data) |
|
23
|
|
|
search_data_ = data_c.load() |
|
24
|
|
|
|
|
25
|
|
|
search_data.equals(search_data_) |
|
26
|
|
|
|
|
27
|
|
|
|
|
28
|
|
View Code Duplication |
def test_data_collector_1(): |
|
|
|
|
|
|
29
|
|
|
def objective_function(opt): |
|
30
|
|
|
score = -opt["x1"] * opt["x1"] |
|
31
|
|
|
return score |
|
32
|
|
|
|
|
33
|
|
|
search_space = { |
|
34
|
|
|
"x1": np.arange(-100, 101, 1), |
|
35
|
|
|
} |
|
36
|
|
|
|
|
37
|
|
|
hyper = Hyperactive() |
|
38
|
|
|
hyper.add_search(objective_function, search_space, n_iter=20) |
|
39
|
|
|
hyper.run() |
|
40
|
|
|
|
|
41
|
|
|
search_data = hyper.results(objective_function) |
|
42
|
|
|
|
|
43
|
|
|
data_c = DataCollector("./search_data.csv") |
|
44
|
|
|
data_c.save(search_data, replace_existing=True) |
|
45
|
|
|
search_data_ = data_c.load() |
|
46
|
|
|
|
|
47
|
|
|
search_data.equals(search_data_) |
|
48
|
|
|
|
|
49
|
|
|
|
|
50
|
|
|
def test_data_collector_2(): |
|
51
|
|
|
data_c = DataCollector("./search_data.csv") |
|
52
|
|
|
|
|
53
|
|
|
def objective_function(opt): |
|
54
|
|
|
score = -opt["x1"] * opt["x1"] |
|
55
|
|
|
|
|
56
|
|
|
para_dict = { |
|
57
|
|
|
"x1": opt["x1"], |
|
58
|
|
|
"score": score, |
|
59
|
|
|
} |
|
60
|
|
|
|
|
61
|
|
|
data_c.append(para_dict) |
|
62
|
|
|
|
|
63
|
|
|
return score |
|
64
|
|
|
|
|
65
|
|
|
search_space = { |
|
66
|
|
|
"x1": np.arange(-100, 101, 1), |
|
67
|
|
|
} |
|
68
|
|
|
|
|
69
|
|
|
hyper = Hyperactive() |
|
70
|
|
|
hyper.add_search(objective_function, search_space, n_iter=20) |
|
71
|
|
|
hyper.run() |
|
72
|
|
|
|
|
73
|
|
|
search_data_ = data_c.load() |
|
74
|
|
|
|