| Conditions | 1 |
| Total Lines | 30 |
| Code Lines | 22 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
| 1 | from sklearn.datasets import load_boston |
||
| 8 | def test_issue_29(): |
||
| 9 | data = load_boston() |
||
| 10 | X, y = data.data, data.target |
||
| 11 | |||
| 12 | def model(para): |
||
| 13 | gbr = GradientBoostingRegressor( |
||
| 14 | n_estimators=para["n_estimators"], |
||
| 15 | max_depth=para["max_depth"], |
||
| 16 | min_samples_split=para["min_samples_split"], |
||
| 17 | ) |
||
| 18 | scores = cross_val_score(gbr, X, y, cv=3) |
||
| 19 | |||
| 20 | print( |
||
| 21 | "Iteration:", |
||
| 22 | para.optimizer.nth_iter, |
||
| 23 | " Best score", |
||
| 24 | para.optimizer.best_score, |
||
| 25 | ) |
||
| 26 | |||
| 27 | return scores.mean() |
||
| 28 | |||
| 29 | search_space = { |
||
| 30 | "n_estimators": list(range(10, 150, 5)), |
||
| 31 | "max_depth": list(range(2, 12)), |
||
| 32 | "min_samples_split": list(range(2, 22)), |
||
| 33 | } |
||
| 34 | |||
| 35 | hyper = Hyperactive() |
||
| 36 | hyper.add_search(model, search_space, n_iter=20) |
||
| 37 | hyper.run() |
||
| 38 |