Total Complexity | 8 |
Total Lines | 58 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | |||
6 | import numpy as np |
||
7 | |||
8 | |||
9 | class SearchSpace: |
||
10 | def __init__(self, _config_): |
||
11 | self.search_config = _config_.search_config |
||
12 | self.warm_start = _config_.warm_start |
||
13 | self.scatter_init = _config_.scatter_init |
||
14 | |||
15 | self.memory = {} |
||
16 | |||
17 | def pos_space_limit(self): |
||
18 | dim = [] |
||
19 | |||
20 | for pos_key in self.para_space: |
||
21 | dim.append(len(self.para_space[pos_key]) - 1) |
||
22 | |||
23 | self.dim = np.array(dim) |
||
24 | |||
25 | def create_kerasSearchSpace(self): |
||
26 | """ |
||
27 | para_space = {} |
||
28 | |||
29 | for para_key in search_config_temp.keys(): |
||
30 | |||
31 | for param_str in search_config_temp[para_key].keys(): |
||
32 | new_param_str = para_key + "." + param_str |
||
33 | |||
34 | para_space[new_param_str] = search_config_temp[para_key][param_str] |
||
35 | |||
36 | """ |
||
37 | |||
38 | self.para_space = self.search_config[list(self.search_config)[0]] |
||
39 | |||
40 | self.pos_space_limit() |
||
41 | |||
42 | def get_random_pos(self): |
||
43 | pos_new = np.random.uniform(np.zeros(self.dim.shape), self.dim, self.dim.shape) |
||
44 | pos = np.rint(pos_new) |
||
45 | |||
46 | # n_zeros = [0] * len(self.dim) |
||
47 | # pos = np.clip(pos_new_int, n_zeros, self.dim) |
||
48 | return pos |
||
49 | |||
50 | def pos2para(self, pos): |
||
51 | if len(self.para_space.keys()) == pos.size: |
||
52 | values_dict = {} |
||
53 | for i, key in enumerate(self.para_space.keys()): |
||
54 | pos_ = int(pos[i]) |
||
55 | values_dict[key] = list(self.para_space[key])[pos_] |
||
56 | |||
57 | return values_dict |
||
58 |