1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from sklearn.datasets import load_iris |
8
|
|
|
from sklearn.model_selection import cross_val_score |
9
|
|
|
from sklearn.tree import DecisionTreeClassifier |
10
|
|
|
|
11
|
|
|
from hyperactive import Optimizer |
12
|
|
|
|
13
|
|
|
data = load_iris() |
14
|
|
|
X, y = data.data, data.target |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
def objective_function(para): |
18
|
|
|
dtc = DecisionTreeClassifier( |
19
|
|
|
max_depth=para["max_depth"], |
20
|
|
|
min_samples_split=para["min_samples_split"], |
21
|
|
|
min_samples_leaf=para["min_samples_leaf"], |
22
|
|
|
) |
23
|
|
|
scores = cross_val_score(dtc, para["features"], para["target"], cv=2) |
24
|
|
|
|
25
|
|
|
return scores.mean() |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
search_space = { |
29
|
|
|
"max_depth": range(1, 21), |
30
|
|
|
"min_samples_split": range(2, 21), |
31
|
|
|
"min_samples_leaf": range(1, 21), |
32
|
|
|
} |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
def _base_test(search, opt_args={}): |
36
|
|
|
opt = Optimizer(**opt_args) |
37
|
|
|
opt.add_search(**search) |
38
|
|
|
opt.run() |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
def test_init_para(): |
42
|
|
|
search = { |
43
|
|
|
"objective_function": objective_function, |
44
|
|
|
"function_parameter": {"features": X, "target": y}, |
45
|
|
|
"search_space": search_space, |
46
|
|
|
} |
47
|
|
|
|
48
|
|
|
init_para1 = { |
49
|
|
|
"max_depth": 3, |
50
|
|
|
"min_samples_split": 3, |
51
|
|
|
"min_samples_leaf": 3, |
52
|
|
|
} |
53
|
|
|
init_para_list = [[init_para1]] |
54
|
|
|
for init_para in init_para_list: |
55
|
|
|
search["init_para"] = init_para |
56
|
|
|
_base_test(search) |
57
|
|
|
|
58
|
|
|
|
59
|
|
|
test_init_para() |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
def test_verbosity(): |
63
|
|
|
search = { |
64
|
|
|
"objective_function": objective_function, |
65
|
|
|
"function_parameter": {"features": X, "target": y}, |
66
|
|
|
"search_space": search_space, |
67
|
|
|
} |
68
|
|
|
|
69
|
|
|
verbosity_list = [0, 1, 2, 3] |
70
|
|
|
for verbosity in verbosity_list: |
71
|
|
|
_base_test(search, opt_args={"verbosity": verbosity}) |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
def test_n_jobs(): |
75
|
|
|
search = { |
76
|
|
|
"objective_function": objective_function, |
77
|
|
|
"function_parameter": {"features": X, "target": y}, |
78
|
|
|
"search_space": search_space, |
79
|
|
|
} |
80
|
|
|
|
81
|
|
|
n_jobs_list = [1, 2, 4, 10, -1] |
82
|
|
|
for n_jobs in n_jobs_list: |
83
|
|
|
search["n_jobs"] = n_jobs |
84
|
|
|
_base_test(search) |
85
|
|
|
|
86
|
|
|
|
87
|
|
|
def test_positional_args(): |
88
|
|
|
search = { |
89
|
|
|
"objective_function": objective_function, |
90
|
|
|
"function_parameter": {"features": X, "target": y}, |
91
|
|
|
"search_space": search_space, |
92
|
|
|
} |
93
|
|
|
_base_test(search) |
94
|
|
|
|
95
|
|
|
|
96
|
|
|
def test_n_iter(): |
97
|
|
|
search = { |
98
|
|
|
"objective_function": objective_function, |
99
|
|
|
"function_parameter": {"features": X, "target": y}, |
100
|
|
|
"search_space": search_space, |
101
|
|
|
} |
102
|
|
|
|
103
|
|
|
n_iter_list = [0, 1, 2, 4, 10, 100] |
104
|
|
|
for n_iter in n_iter_list: |
105
|
|
|
search["n_iter"] = n_iter |
106
|
|
|
_base_test(search) |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
def test_optimizer(): |
110
|
|
|
search = { |
111
|
|
|
"objective_function": objective_function, |
112
|
|
|
"function_parameter": {"features": X, "target": y}, |
113
|
|
|
"search_space": search_space, |
114
|
|
|
"n_iter": 33, |
115
|
|
|
} |
116
|
|
|
|
117
|
|
|
optimizer_list = [ |
118
|
|
|
"HillClimbing", |
119
|
|
|
"StochasticHillClimbing", |
120
|
|
|
"TabuSearch", |
121
|
|
|
"RandomSearch", |
122
|
|
|
"RandomRestartHillClimbing", |
123
|
|
|
"RandomAnnealing", |
124
|
|
|
"SimulatedAnnealing", |
125
|
|
|
"StochasticTunneling", |
126
|
|
|
"ParallelTempering", |
127
|
|
|
"ParticleSwarm", |
128
|
|
|
"EvolutionStrategy", |
129
|
|
|
"Bayesian", |
130
|
|
|
"TPE", |
131
|
|
|
"DecisionTree", |
132
|
|
|
] |
133
|
|
|
for optimizer in optimizer_list: |
134
|
|
|
search["optimizer"] = optimizer |
135
|
|
|
_base_test(search) |
136
|
|
|
|