1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
|
7
|
|
|
import numpy as np |
8
|
|
|
from multiprocessing import Pool |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
class Search: |
12
|
|
|
def __init__(self, search_processes): |
13
|
|
|
self.search_processes = search_processes |
14
|
|
|
self.n_processes = len(search_processes) |
15
|
|
|
self._n_process_range = range(0, self.n_processes) |
16
|
|
|
|
17
|
|
|
print("self.n_processes", self.n_processes) |
18
|
|
|
|
19
|
|
|
def run(self, max_time): |
20
|
|
|
self.start_time = time.time() |
21
|
|
|
self.results = {} |
22
|
|
|
self.eval_times = {} |
23
|
|
|
self.iter_times = {} |
24
|
|
|
self.best_scores = {} |
25
|
|
|
self.pos_list = {} |
26
|
|
|
self.score_list = {} |
27
|
|
|
|
28
|
|
|
if len(self.search_processes) == 1: |
29
|
|
|
self._run_job(0) |
30
|
|
|
else: |
31
|
|
|
self._run_multiple_jobs() |
32
|
|
|
|
33
|
|
|
return ( |
34
|
|
|
self.results, |
35
|
|
|
self.pos_list, |
36
|
|
|
self.score_list, |
37
|
|
|
self.eval_times, |
38
|
|
|
self.iter_times, |
39
|
|
|
self.best_scores, |
40
|
|
|
) |
41
|
|
|
|
42
|
|
|
def _search_multiprocessing(self): |
43
|
|
|
"""Wrapper for the parallel search. Passes integer that corresponds to process number""" |
44
|
|
|
pool = Pool(self.n_processes) |
45
|
|
|
_p_list = zip(*pool.map(self._run, self._n_process_range)) |
46
|
|
|
|
47
|
|
|
return _p_list |
48
|
|
|
|
49
|
|
|
def _run_job(self, nth_process): |
50
|
|
|
_p_ = self._run(nth_process) |
51
|
|
|
# self._get_attributes(_p_) |
52
|
|
|
|
53
|
|
|
def _get_attributes(self, _p_): |
54
|
|
|
self.results[self.process.obj_func] = self.process._process_results() |
55
|
|
|
self.eval_times[self.process.obj_func] = self.process.eval_time |
56
|
|
|
self.iter_times[self.process.obj_func] = self.process.iter_times |
57
|
|
|
self.best_scores[self.process.obj_func] = self.process.score_best |
58
|
|
|
|
59
|
|
|
if isinstance(_p_, list): |
60
|
|
|
self.pos_list[self.process.obj_func] = [np.array(p.pos_list) for p in _p_] |
61
|
|
|
self.score_list[self.process.obj_func] = [ |
62
|
|
|
np.array(p.score_list) for p in _p_ |
63
|
|
|
] |
64
|
|
|
else: |
65
|
|
|
self.pos_list[self.process.obj_func] = [np.array(_p_.pos_list)] |
66
|
|
|
self.score_list[self.process.obj_func] = [np.array(_p_.score_list)] |
67
|
|
|
|
68
|
|
|
def _run_multiple_jobs(self): |
69
|
|
|
_p_list = self._search_multiprocessing() |
70
|
|
|
for _ in range(int(self.n_processes / 2) + 2): |
71
|
|
|
print("\n") |
72
|
|
|
|
73
|
|
|
""" |
74
|
|
|
for self.process, _p_ in zip(self.processlist, _p_list): |
75
|
|
|
self._get_attributes(_p_) |
76
|
|
|
""" |
77
|
|
|
|
78
|
|
|
def _run(self, nth_process): |
79
|
|
|
process = self.search_processes[nth_process] |
80
|
|
|
return process.search(nth_process) |
81
|
|
|
|
82
|
|
|
""" |
83
|
|
|
|
84
|
|
|
def _time_exceeded(self): |
85
|
|
|
run_time = time.time() - self.start_time |
86
|
|
|
return self.study_para.max_time and run_time > self.study_para.max_time |
87
|
|
|
|
88
|
|
|
def _initialize_search(self, study_para, nth_process, _info_): |
89
|
|
|
study_para._set_random_seed(nth_process) |
90
|
|
|
|
91
|
|
|
self.process = SearchProcess(nth_process, study_para, _info_) |
92
|
|
|
self._pbar_.init_p_bar(nth_process, self.study_para) |
93
|
|
|
""" |
94
|
|
|
|