|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
|
|
6
|
|
|
import random |
|
7
|
|
|
import numpy as np |
|
8
|
|
|
import multiprocessing |
|
9
|
|
|
|
|
10
|
|
|
from .checks import check_hyperactive_para, check_search_para |
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
|
def stop_warnings(): |
|
14
|
|
|
# because sklearn warnings are annoying when they appear 100 times |
|
15
|
|
|
def warn(*args, **kwargs): |
|
16
|
|
|
pass |
|
17
|
|
|
|
|
18
|
|
|
import warnings |
|
19
|
|
|
|
|
20
|
|
|
warnings.warn = warn |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
class ProcessArguments: |
|
24
|
|
|
def __init__(self, args, kwargs, random_state): |
|
25
|
|
|
self.kwargs = kwargs |
|
26
|
|
|
self._set_default() |
|
27
|
|
|
self._add_args2kwargs(args) |
|
28
|
|
|
|
|
29
|
|
|
self.function_parameter = self.kwargs["function_parameter"] |
|
30
|
|
|
self.search_space = self.kwargs["search_space"] |
|
31
|
|
|
self.optimizer = self.kwargs["optimizer"] |
|
32
|
|
|
self.random_state = random_state |
|
33
|
|
|
self.n_jobs = self.kwargs["n_jobs"] |
|
34
|
|
|
self.init_para = self.kwargs["init_para"] |
|
35
|
|
|
|
|
36
|
|
|
self.set_n_jobs() |
|
37
|
|
|
|
|
38
|
|
|
if isinstance(self.optimizer, dict): |
|
39
|
|
|
optimizer = list(self.optimizer.keys())[0] |
|
40
|
|
|
self.opt_para = self.optimizer[optimizer] |
|
41
|
|
|
self.optimizer = optimizer |
|
42
|
|
|
|
|
43
|
|
|
self.n_positions = self._get_n_positions() |
|
44
|
|
|
print("n_positions", self.n_positions) |
|
45
|
|
|
else: |
|
46
|
|
|
self.opt_para = {} |
|
47
|
|
|
self.n_positions = self._get_n_positions() |
|
48
|
|
|
|
|
49
|
|
|
def _get_n_positions(self): |
|
50
|
|
|
n_positions_strings = [ |
|
51
|
|
|
"n_positions", |
|
52
|
|
|
"system_temperatures", |
|
53
|
|
|
"n_particles", |
|
54
|
|
|
"individuals", |
|
55
|
|
|
] |
|
56
|
|
|
|
|
57
|
|
|
n_positions = 1 |
|
58
|
|
|
for n_pos_name in n_positions_strings: |
|
59
|
|
|
if n_pos_name in list(self.opt_para.keys()): |
|
60
|
|
|
n_positions = self.opt_para[n_pos_name] |
|
61
|
|
|
if n_positions == "system_temperatures": |
|
62
|
|
|
n_positions = len(n_positions) |
|
63
|
|
|
|
|
64
|
|
|
return n_positions |
|
65
|
|
|
|
|
66
|
|
|
def set_n_jobs(self): |
|
67
|
|
|
"""Sets the number of jobs to run in parallel""" |
|
68
|
|
|
num_cores = multiprocessing.cpu_count() |
|
69
|
|
|
if self.n_jobs == -1 or self.n_jobs > num_cores: |
|
70
|
|
|
self.n_jobs = num_cores |
|
71
|
|
|
|
|
72
|
|
|
def get_process_para(self): |
|
73
|
|
|
pass |
|
74
|
|
|
|
|
75
|
|
|
def _check_parameter(kwargs): |
|
76
|
|
|
pass |
|
77
|
|
|
|
|
78
|
|
|
def _add_args2kwargs(self, args): |
|
79
|
|
|
for arg in args: |
|
80
|
|
|
if callable(arg): |
|
81
|
|
|
self.kwargs["objective_function"] = arg |
|
82
|
|
|
elif isinstance(arg, dict): |
|
83
|
|
|
self.kwargs["search_space"] = arg |
|
84
|
|
|
|
|
85
|
|
|
def set_random_seed(self, thread): |
|
86
|
|
|
"""Sets the random seed separately for each thread (to avoid getting the same results in each thread)""" |
|
87
|
|
|
if self.random_state is None: |
|
88
|
|
|
self.random_state = np.random.randint(0, high=2 ** 32 - 2) |
|
89
|
|
|
|
|
90
|
|
|
random.seed(self.random_state + thread) |
|
91
|
|
|
np.random.seed(self.random_state + thread) |
|
92
|
|
|
|
|
93
|
|
|
def _set_default(self): |
|
94
|
|
|
self.kwargs.setdefault("function_parameter", None) |
|
95
|
|
|
self.kwargs.setdefault("memory", None) |
|
96
|
|
|
self.kwargs.setdefault("optimizer", "RandomSearch") |
|
97
|
|
|
self.kwargs.setdefault("n_iter", 10) |
|
98
|
|
|
self.kwargs.setdefault("n_jobs", 1) |
|
99
|
|
|
self.kwargs.setdefault("init_para", []) |
|
100
|
|
|
self.kwargs.setdefault("distribution", None) |
|
101
|
|
|
|