| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                from tensorflow import keras  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                from sklearn.datasets import make_classification  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                from sklearn.model_selection import train_test_split  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                from hyperactive.base import BaseExperiment  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                X, y = make_classification(n_samples=1000, n_features=20, random_state=42)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    11
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                class KerasMultiLayerPerceptron(BaseExperiment):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                    """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                    A class for creating and evaluating a Keras-based Multi-Layer Perceptron (MLP) model.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                    This class inherits from BaseExperiment and is designed to build a simple MLP  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                    using Keras, compile it with the Adam optimizer, and train it on the provided  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                    training data. The model consists of one hidden dense layer with configurable  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                    size and activation function, followed by an output layer with a sigmoid  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    20
                 | 
                                    
                                                     | 
                
                 | 
                    activation for binary classification.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    21
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                    Attributes:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    23
                 | 
                                    
                                                     | 
                
                 | 
                        X_train (array-like): Training feature data.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    24
                 | 
                                    
                                                     | 
                
                 | 
                        X_val (array-like): Validation feature data.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    25
                 | 
                                    
                                                     | 
                
                 | 
                        y_train (array-like): Training target data.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                        y_val (array-like): Validation target data.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    27
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    28
                 | 
                                    
                                                     | 
                
                 | 
                    Methods:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    29
                 | 
                                    
                                                     | 
                
                 | 
                        _score(**params): Builds, compiles, and trains the MLP model using the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                        specified parameters for the hidden layer, and returns the validation  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    31
                 | 
                                    
                                                     | 
                
                 | 
                        accuracy.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    32
                 | 
                                    
                                                     | 
                
                 | 
                    """  | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    34
                 | 
                                    
                                                     | 
                
                 | 
                    def __init__(self, X_train, X_val, y_train, y_val):  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    35
                 | 
                                    
                                                     | 
                
                 | 
                        super().__init__()  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                        self.X_train = X_train  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    38
                 | 
                                    
                                                     | 
                
                 | 
                        self.X_val = X_val  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                        self.y_train = y_train  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                        self.y_val = y_val  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    41
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                    def _score(self, **params):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                        dense_layer_0 = params["dense_layer_0"]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                        activation_layer_0 = params["activation_layer_0"]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                        model = keras.Sequential(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                            [  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                                keras.layers.Dense(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                                    dense_layer_0,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    50
                 | 
                                    
                                                     | 
                
                 | 
                                    activation=activation_layer_0,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                                    input_shape=(20,),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    52
                 | 
                                    
                                                     | 
                
                 | 
                                ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    53
                 | 
                                    
                                                     | 
                
                 | 
                                keras.layers.Dense(1, activation="sigmoid"),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                            ]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    55
                 | 
                                    
                                                     | 
                
                 | 
                        )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    56
                 | 
                                    
                                                     | 
                
                 | 
                        model.compile(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                            optimizer=keras.optimizers.Adam(learning_rate=0.01),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                            loss="binary_crossentropy",  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                            metrics=["accuracy"],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                        )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                        model.fit(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                 | 
                            self.X_train,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                            self.y_train,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    64
                 | 
                                    
                                                     | 
                
                 | 
                            batch_size=32,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                            epochs=10,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                            validation_data=(self.X_val, self.y_val),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    67
                 | 
                                    
                                                     | 
                
                 | 
                        )  | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                        return model.evaluate(X_val, y_val)[1]  | 
            
            
                                                        
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                 |