Passed
Push — master ( 588022...8a2a5a )
by Simon
01:36
created

SpiralOptimization.__init__()   A

Complexity

Conditions 1

Size

Total Lines 25
Code Lines 23

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 23
dl 0
loc 25
rs 9.328
c 0
b 0
f 0
cc 1
nop 11

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
from hyperactive.opt._adapters._gfo import _BaseGFOadapter
2
3
4
class SpiralOptimization(_BaseGFOadapter):
5
    """Spiral optimizer.
6
7
    Parameters
8
    ----------
9
    search_space : dict[str, list]
10
        The search space to explore. A dictionary with parameter
11
        names as keys and a numpy array as values.
12
        Optional, can be passed later via ``set_params``.
13
    initialize : dict[str, int], default={"grid": 4, "random": 2, "vertices": 4}
14
        The method to generate initial positions. A dictionary with
15
        the following key literals and the corresponding value type:
16
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
17
    constraints : list[callable], default=[]
18
        A list of constraints, where each constraint is a callable.
19
        The callable returns `True` or `False` dependend on the input parameters.
20
    random_state : None, int, default=None
21
        If None, create a new random state. If int, create a new random state
22
        seeded with the value.
23
    rand_rest_p : float, default=0.1
24
        The probability of a random iteration during the the search process.
25
    population : int
26
        The number of particles in the swarm.
27
    decay_rate : float
28
        This parameter is a factor, that influences the radius of the particles during their spiral movement.
29
        Lower values accelerates the convergence of the particles to the best known position, while values above 1 eventually lead to a movement where the particles spiral away from each other.
30
    n_iter : int, default=100
31
        The number of iterations to run the optimizer.
32
    verbose : bool, default=False
33
        If True, print the progress of the optimization process.
34
    experiment : BaseExperiment, optional
35
        The experiment to optimize parameters for.
36
        Optional, can be passed later via ``set_params``.
37
38
    Examples
39
    --------
40
    Basic usage of SpiralOptimization with a scikit-learn experiment:
41
42
    1. defining the experiment to optimize:
43
    >>> from hyperactive.experiment.integrations import SklearnCvExperiment
44
    >>> from sklearn.datasets import load_iris
45
    >>> from sklearn.svm import SVC
46
    >>>
47
    >>> X, y = load_iris(return_X_y=True)
48
    >>>
49
    >>> sklearn_exp = SklearnCvExperiment(
50
    ...     estimator=SVC(),
51
    ...     X=X,
52
    ...     y=y,
53
    ... )
54
55
    2. setting up the spiralOptimization optimizer:
56
    >>> from hyperactive.opt import SpiralOptimization
57
    >>> import numpy as np
58
    >>>
59
    >>> config = {
60
    ...     "search_space": {
61
    ...         "C": [0.01, 0.1, 1, 10],
62
    ...         "gamma": [0.0001, 0.01, 0.1, 1, 10],
63
    ...     },
64
    ...     "n_iter": 100,
65
    ... }
66
    >>> optimizer = SpiralOptimization(experiment=sklearn_exp, **config)
67
68
    3. running the optimization:
69
    >>> best_params = optimizer.run()
70
71
    Best parameters can also be accessed via:
72
    >>> best_params = optimizer.best_params_
73
    """
74
75
    _tags = {
76
        "info:name": "Spiral Optimization",
77
        "info:local_vs_global": "mixed",
78
        "info:explore_vs_exploit": "explore",
79
        "info:compute": "middle",
80
    }
81
82
    def __init__(
83
        self,
84
        search_space=None,
85
        initialize=None,
86
        constraints=None,
87
        random_state=None,
88
        rand_rest_p=0.1,
89
        population: int = 10,
90
        decay_rate: float = 0.99,
91
        n_iter=100,
92
        verbose=False,
93
        experiment=None,
94
    ):
95
        self.random_state = random_state
96
        self.rand_rest_p = rand_rest_p
97
        self.population = population
98
        self.decay_rate = decay_rate
99
        self.search_space = search_space
100
        self.initialize = initialize
101
        self.constraints = constraints
102
        self.n_iter = n_iter
103
        self.experiment = experiment
104
        self.verbose = verbose
105
106
        super().__init__()
107
108
    def _get_gfo_class(self):
109
        """Get the GFO class to use.
110
111
        Returns
112
        -------
113
        class
114
            The GFO class to use. One of the concrete GFO classes
115
        """
116
        from gradient_free_optimizers import SpiralOptimization
117
118
        return SpiralOptimization
119
120
    @classmethod
121
    def get_test_params(cls, parameter_set="default"):
122
        """Get the test parameters for the optimizer.
123
124
        Returns
125
        -------
126
        dict with str keys
127
            The test parameters dictionary.
128
        """
129
        import numpy as np
130
131
        params = super().get_test_params()
132
        experiment = params[0]["experiment"]
133
        more_params = {
134
            "experiment": experiment,
135
            "population": 20,
136
            "decay_rate": 0.9999,
137
            "search_space": {
138
                "C": [0.01, 0.1, 1, 10],
139
                "gamma": [0.0001, 0.01, 0.1, 1, 10],
140
            },
141
            "n_iter": 100,
142
        }
143
        params.append(more_params)
144
        return params
145