Passed
Push — master ( 588022...8a2a5a )
by Simon
01:36
created

SimulatedAnnealing._get_gfo_class()   A

Complexity

Conditions 1

Size

Total Lines 11
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 3
dl 0
loc 11
rs 10
c 0
b 0
f 0
cc 1
nop 1
1
from hyperactive.opt._adapters._gfo import _BaseGFOadapter
2
3
4
class SimulatedAnnealing(_BaseGFOadapter):
5
    """Simulated annealing optimizer.
6
7
    Parameters
8
    ----------
9
    search_space : dict[str, list]
10
        The search space to explore. A dictionary with parameter
11
        names as keys and a numpy array as values.
12
    initialize : dict[str, int]
13
        The method to generate initial positions. A dictionary with
14
        the following key literals and the corresponding value type:
15
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
16
    constraints : list[callable]
17
        A list of constraints, where each constraint is a callable.
18
        The callable returns `True` or `False` dependend on the input parameters.
19
    random_state : None, int
20
        If None, create a new random state. If int, create a new random state
21
        seeded with the value.
22
    rand_rest_p : float
23
        The probability of a random iteration during the the search process.
24
    epsilon : float
25
        The step-size for the climbing.
26
    distribution : str
27
        The type of distribution to sample from.
28
    n_neighbours : int
29
        The number of neighbours to sample and evaluate before moving to the best
30
        of those neighbours.
31
    annealing_rate : float
32
        The rate at which the temperature is annealed.
33
    start_temp : float
34
        The initial temperature.
35
    n_iter : int, default=100
36
        The number of iterations to run the optimizer.
37
    verbose : bool, default=False
38
        If True, print the progress of the optimization process.
39
    experiment : BaseExperiment, optional
40
        The experiment to optimize parameters for.
41
        Optional, can be passed later via ``set_params``.
42
43
    Examples
44
    --------
45
    Basic usage of SimulatedAnnealing with a scikit-learn experiment:
46
47
    1. defining the experiment to optimize:
48
    >>> from hyperactive.experiment.integrations import SklearnCvExperiment
49
    >>> from sklearn.datasets import load_iris
50
    >>> from sklearn.svm import SVC
51
    >>>
52
    >>> X, y = load_iris(return_X_y=True)
53
    >>>
54
    >>> sklearn_exp = SklearnCvExperiment(
55
    ...     estimator=SVC(),
56
    ...     X=X,
57
    ...     y=y,
58
    ... )
59
60
    2. setting up the simulatedAnnealing optimizer:
61
    >>> from hyperactive.opt import SimulatedAnnealing
62
    >>> import numpy as np
63
    >>>
64
    >>> config = {
65
    ...     "search_space": {
66
    ...         "C": [0.01, 0.1, 1, 10],
67
    ...         "gamma": [0.0001, 0.01, 0.1, 1, 10],
68
    ...     },
69
    ...     "n_iter": 100,
70
    ... }
71
    >>> optimizer = SimulatedAnnealing(experiment=sklearn_exp, **config)
72
73
    3. running the optimization:
74
    >>> best_params = optimizer.run()
75
76
    Best parameters can also be accessed via:
77
    >>> best_params = optimizer.best_params_
78
    """
79
80
    _tags = {
81
        "info:name": "Simulated Annealing",
82
        "info:local_vs_global": "global",
83
        "info:explore_vs_exploit": "explore",
84
        "info:compute": "middle",
85
    }
86
87
    def __init__(
88
        self,
89
        search_space=None,
90
        initialize=None,
91
        constraints=None,
92
        random_state=None,
93
        rand_rest_p=0.1,
94
        epsilon=0.01,
95
        distribution="normal",
96
        n_neighbours=10,
97
        annealing_rate=0.97,
98
        start_temp=1,
99
        n_iter=100,
100
        verbose=False,
101
        experiment=None,
102
    ):
103
        self.random_state = random_state
104
        self.rand_rest_p = rand_rest_p
105
        self.epsilon = epsilon
106
        self.distribution = distribution
107
        self.n_neighbours = n_neighbours
108
        self.annealing_rate = annealing_rate
109
        self.start_temp = start_temp
110
        self.search_space = search_space
111
        self.initialize = initialize
112
        self.constraints = constraints
113
        self.n_iter = n_iter
114
        self.experiment = experiment
115
        self.verbose = verbose
116
117
        super().__init__()
118
119
    def _get_gfo_class(self):
120
        """Get the GFO class to use.
121
122
        Returns
123
        -------
124
        class
125
            The GFO class to use. One of the concrete GFO classes
126
        """
127
        from gradient_free_optimizers import SimulatedAnnealingOptimizer
128
129
        return SimulatedAnnealingOptimizer
130
131
    @classmethod
132
    def get_test_params(cls, parameter_set="default"):
133
        """Get the test parameters for the optimizer.
134
135
        Returns
136
        -------
137
        dict with str keys
138
            The test parameters dictionary.
139
        """
140
        import numpy as np
141
142
        params = super().get_test_params()
143
        experiment = params[0]["experiment"]
144
        more_params = {
145
            "experiment": experiment,
146
            "start_temp": 0.33,
147
            "annealing_rate": 1.01,
148
            "search_space": {
149
                "C": [0.01, 0.1, 1, 10],
150
                "gamma": [0.0001, 0.01, 0.1, 1, 10],
151
            },
152
            "n_iter": 100,
153
        }
154
        params.append(more_params)
155
        return params
156