Passed
Push — master ( 588022...8a2a5a )
by Simon
01:36
created

HillClimbing.__init__()   A

Complexity

Conditions 1

Size

Total Lines 27
Code Lines 25

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 25
dl 0
loc 27
rs 9.28
c 0
b 0
f 0
cc 1
nop 12

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
"""Hill climbing optimizer from gfo."""
2
3
# copyright: hyperactive developers, MIT License (see LICENSE file)
4
5
from hyperactive.opt._adapters._gfo import _BaseGFOadapter
6
7
8
class HillClimbing(_BaseGFOadapter):
9
    """Hill climbing optimizer.
10
11
    Parameters
12
    ----------
13
    search_space : dict[str, list]
14
        The search space to explore. A dictionary with parameter
15
        names as keys and a numpy array as values.
16
        Optional, can be passed later via ``set_params``.
17
    initialize : dict[str, int], default={"grid": 4, "random": 2, "vertices": 4}
18
        The method to generate initial positions. A dictionary with
19
        the following key literals and the corresponding value type:
20
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
21
    constraints : list[callable], default=[]
22
        A list of constraints, where each constraint is a callable.
23
        The callable returns `True` or `False` dependend on the input parameters.
24
    random_state : None, int, default=None
25
        If None, create a new random state. If int, create a new random state
26
        seeded with the value.
27
    rand_rest_p : float, default=0.1
28
        The probability of a random iteration during the the search process.
29
    epsilon : float, default=0.01
30
        The step-size for the climbing.
31
    distribution : str, default="normal"
32
        The type of distribution to sample from.
33
    n_neighbours : int, default=10
34
        The number of neighbours to sample and evaluate before moving to the best
35
        of those neighbours.
36
    n_iter : int, default=100
37
        The number of iterations to run the optimizer.
38
    verbose : bool, default=False
39
        If True, print the progress of the optimization process.
40
    experiment : BaseExperiment, optional
41
        The experiment to optimize parameters for.
42
        Optional, can be passed later via ``set_params``.
43
44
    Examples
45
    --------
46
    Hill climbing applied to scikit-learn parameter tuning:
47
48
    1. defining the experiment to optimize:
49
    >>> from hyperactive.experiment.integrations import SklearnCvExperiment
50
    >>> from sklearn.datasets import load_iris
51
    >>> from sklearn.svm import SVC
52
    >>>
53
    >>> X, y = load_iris(return_X_y=True)
54
    >>>
55
    >>> sklearn_exp = SklearnCvExperiment(
56
    ...     estimator=SVC(),
57
    ...     X=X,
58
    ...     y=y,
59
    ... )
60
61
    2. setting up the hill climbing optimizer:
62
    >>> from hyperactive.opt import HillClimbing
63
    >>> import numpy as np
64
    >>>
65
    >>> config = {
66
    ...     "search_space": {
67
    ...         "C": [0.01, 0.1, 1, 10],
68
    ...         "gamma": [0.0001, 0.01, 0.1, 1, 10],
69
    ...     },
70
    ...     "n_iter": 100,
71
    ... }
72
    >>> hillclimbing = HillClimbing(experiment=sklearn_exp, **config)
73
74
    3. running the hill climbing search:
75
    >>> best_params = hillclimbing.run()
76
77
    Best parameters can also be accessed via the attributes:
78
    >>> best_params = hillclimbing.best_params_
79
    """
80
81
    _tags = {
82
        "info:name": "Hill Climbing",
83
        "info:local_vs_global": "local",  # "local", "mixed", "global"
84
        "info:explore_vs_exploit": "exploit",  # "explore", "exploit", "mixed"
85
        "info:compute": "low",  # "low", "middle", "high"
86
    }
87
88
    def __init__(
89
        self,
90
        search_space=None,
91
        initialize=None,
92
        constraints=None,
93
        random_state=None,
94
        rand_rest_p=0.1,
95
        epsilon=0.01,
96
        distribution="normal",
97
        n_neighbours=10,
98
        n_iter=100,
99
        verbose=False,
100
        experiment=None,
101
    ):
102
        self.random_state = random_state
103
        self.rand_rest_p = rand_rest_p
104
        self.epsilon = epsilon
105
        self.distribution = distribution
106
        self.n_neighbours = n_neighbours
107
        self.search_space = search_space
108
        self.initialize = initialize
109
        self.constraints = constraints
110
        self.n_iter = n_iter
111
        self.experiment = experiment
112
        self.verbose = verbose
113
114
        super().__init__()
115
116
    def _get_gfo_class(self):
117
        """Get the GFO class to use.
118
119
        Returns
120
        -------
121
        class
122
            The GFO class to use. One of the concrete GFO classes
123
        """
124
        from gradient_free_optimizers import HillClimbingOptimizer
125
126
        return HillClimbingOptimizer
127