Passed
Push — master ( 588022...8a2a5a )
by Simon
01:36
created

DownhillSimplexOptimizer.__init__()   A

Complexity

Conditions 1

Size

Total Lines 29
Code Lines 27

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 27
dl 0
loc 29
rs 9.232
c 0
b 0
f 0
cc 1
nop 13

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
from hyperactive.opt._adapters._gfo import _BaseGFOadapter
2
3
4
class DownhillSimplexOptimizer(_BaseGFOadapter):
5
    """Downhill simplex optimizer.
6
7
    Parameters
8
    ----------
9
    search_space : dict[str, list]
10
        The search space to explore. A dictionary with parameter
11
        names as keys and a numpy array as values.
12
    initialize : dict[str, int]
13
        The method to generate initial positions. A dictionary with
14
        the following key literals and the corresponding value type:
15
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
16
    constraints : list[callable]
17
        A list of constraints, where each constraint is a callable.
18
        The callable returns `True` or `False` dependend on the input parameters.
19
    random_state : None, int
20
        If None, create a new random state. If int, create a new random state
21
        seeded with the value.
22
    rand_rest_p : float
23
        The probability of a random iteration during the the search process.
24
    alpha : float
25
        The reflection parameter of the simplex algorithm.
26
    gamma : float
27
        The expansion parameter of the simplex algorithm.
28
    beta : float
29
        The contraction parameter of the simplex algorithm.
30
    sigma : float
31
        The shrinking parameter of the simplex algorithm.
32
    n_iter : int, default=100
33
        The number of iterations to run the optimizer.
34
    verbose : bool, default=False
35
        If True, print the progress of the optimization process.
36
    experiment : BaseExperiment, optional
37
        The experiment to optimize parameters for.
38
        Optional, can be passed later via ``set_params``.
39
40
    Examples
41
    --------
42
    Basic usage of DownhillSimplexOptimizer with a scikit-learn experiment:
43
44
    1. defining the experiment to optimize:
45
    >>> from hyperactive.experiment.integrations import SklearnCvExperiment
46
    >>> from sklearn.datasets import load_iris
47
    >>> from sklearn.svm import SVC
48
    >>>
49
    >>> X, y = load_iris(return_X_y=True)
50
    >>>
51
    >>> sklearn_exp = SklearnCvExperiment(
52
    ...     estimator=SVC(),
53
    ...     X=X,
54
    ...     y=y,
55
    ... )
56
57
    2. setting up the downhillSimplexOptimizer optimizer:
58
    >>> from hyperactive.opt import DownhillSimplexOptimizer
59
    >>> import numpy as np
60
    >>>
61
    >>> config = {
62
    ...     "search_space": {
63
    ...         "C": [0.01, 0.1, 1, 10],
64
    ...         "gamma": [0.0001, 0.01, 0.1, 1, 10],
65
    ...     },
66
    ...     "n_iter": 100,
67
    ... }
68
    >>> optimizer = DownhillSimplexOptimizer(experiment=sklearn_exp, **config)
69
70
    3. running the optimization:
71
    >>> best_params = optimizer.run()
72
73
    Best parameters can also be accessed via:
74
    >>> best_params = optimizer.best_params_
75
    """
76
77
    _tags = {
78
        "info:name": "Downhill Simplex",
79
        "info:local_vs_global": "local",
80
        "info:explore_vs_exploit": "exploit",
81
        "info:compute": "low",
82
    }
83
84
    def __init__(
85
        self,
86
        search_space=None,
87
        initialize=None,
88
        constraints=None,
89
        random_state=None,
90
        rand_rest_p=0.1,
91
        alpha=1,
92
        gamma=2,
93
        beta=0.5,
94
        sigma=0.5,
95
        n_iter=100,
96
        verbose=False,
97
        experiment=None,
98
    ):
99
        self.random_state = random_state
100
        self.rand_rest_p = rand_rest_p
101
        self.alpha = alpha
102
        self.gamma = gamma
103
        self.beta = beta
104
        self.sigma = sigma
105
        self.search_space = search_space
106
        self.initialize = initialize
107
        self.constraints = constraints
108
        self.n_iter = n_iter
109
        self.experiment = experiment
110
        self.verbose = verbose
111
112
        super().__init__()
113
114
    def _get_gfo_class(self):
115
        """Get the GFO class to use.
116
117
        Returns
118
        -------
119
        class
120
            The GFO class to use. One of the concrete GFO classes
121
        """
122
        from gradient_free_optimizers import DownhillSimplexOptimizer
123
124
        return DownhillSimplexOptimizer
125
126
    @classmethod
127
    def get_test_params(cls, parameter_set="default"):
128
        """Get the test parameters for the optimizer.
129
130
        Returns
131
        -------
132
        dict with str keys
133
            The test parameters dictionary.
134
        """
135
        import numpy as np
136
137
        params = super().get_test_params()
138
        experiment = params[0]["experiment"]
139
        more_params = {
140
            "experiment": experiment,
141
            "alpha": 0.33,
142
            "beta": 0.33,
143
            "gamma": 0.33,
144
            "sigma": 0.33,
145
            "search_space": {
146
                "C": [0.01, 0.1, 1, 10],
147
                "gamma": [0.0001, 0.01, 0.1, 1, 10],
148
            },
149
            "n_iter": 100,
150
        }
151
        params.append(more_params)
152
        return params
153