Passed
Push — master ( 588022...8a2a5a )
by Simon
01:36
created

BayesianOptimizer._get_gfo_class()   A

Complexity

Conditions 1

Size

Total Lines 11
Code Lines 3

Duplication

Lines 11
Ratio 100 %

Importance

Changes 0
Metric Value
eloc 3
dl 11
loc 11
rs 10
c 0
b 0
f 0
cc 1
nop 1
1
from hyperactive.opt._adapters._gfo import _BaseGFOadapter
2
3
4 View Code Duplication
class BayesianOptimizer(_BaseGFOadapter):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
5
    """Bayesian optimizer.
6
7
    Parameters
8
    ----------
9
    search_space : dict[str, list]
10
        The search space to explore. A dictionary with parameter
11
        names as keys and a numpy array as values.
12
    initialize : dict[str, int]
13
        The method to generate initial positions. A dictionary with
14
        the following key literals and the corresponding value type:
15
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
16
    constraints : list[callable]
17
        A list of constraints, where each constraint is a callable.
18
        The callable returns `True` or `False` dependend on the input parameters.
19
    random_state : None, int
20
        If None, create a new random state. If int, create a new random state
21
        seeded with the value.
22
    rand_rest_p : float
23
        The probability of a random iteration during the search process.
24
    warm_start_smbo
25
        The warm start for SMBO.
26
    max_sample_size : int
27
        The maximum number of points to sample.
28
    sampling : dict
29
        The sampling method to use.
30
    replacement : bool
31
        Whether to sample with replacement.
32
    gpr : dict
33
        The Gaussian Process Regressor to use.
34
    xi : float
35
        The exploration-exploitation trade-off parameter.
36
    n_iter : int, default=100
37
        The number of iterations to run the optimizer.
38
    verbose : bool, default=False
39
        If True, print the progress of the optimization process.
40
    experiment : BaseExperiment, optional
41
        The experiment to optimize parameters for.
42
        Optional, can be passed later via ``set_params``.
43
44
    Examples
45
    --------
46
    Basic usage of BayesianOptimizer with a scikit-learn experiment:
47
48
    1. defining the experiment to optimize:
49
    >>> from hyperactive.experiment.integrations import SklearnCvExperiment
50
    >>> from sklearn.datasets import load_iris
51
    >>> from sklearn.svm import SVC
52
    >>>
53
    >>> X, y = load_iris(return_X_y=True)
54
    >>>
55
    >>> sklearn_exp = SklearnCvExperiment(
56
    ...     estimator=SVC(),
57
    ...     X=X,
58
    ...     y=y,
59
    ... )
60
61
    2. setting up the bayesianOptimizer optimizer:
62
    >>> from hyperactive.opt import BayesianOptimizer
63
    >>> import numpy as np
64
    >>>
65
    >>> config = {
66
    ...     "search_space": {
67
    ...         "C": [0.01, 0.1, 1, 10],
68
    ...         "gamma": [0.0001, 0.01, 0.1, 1, 10],
69
    ...     },
70
    ...     "n_iter": 100,
71
    ... }
72
    >>> optimizer = BayesianOptimizer(experiment=sklearn_exp, **config)
73
74
    3. running the optimization:
75
    >>> best_params = optimizer.run()
76
77
    Best parameters can also be accessed via:
78
    >>> best_params = optimizer.best_params_
79
    """
80
81
    _tags = {
82
        "info:name": "Bayesian Optimization",
83
        "info:local_vs_global": "global",
84
        "info:explore_vs_exploit": "exploit",
85
        "info:compute": "high",
86
    }
87
88
    def __init__(
89
        self,
90
        search_space=None,
91
        initialize=None,
92
        constraints=None,
93
        random_state=None,
94
        rand_rest_p=0.1,
95
        warm_start_smbo=None,
96
        max_sample_size=10000000,
97
        sampling=None,
98
        replacement=True,
99
        xi=0.03,
100
        n_iter=100,
101
        verbose=False,
102
        experiment=None,
103
    ):
104
        self.random_state = random_state
105
        self.rand_rest_p = rand_rest_p
106
107
        self.warm_start_smbo = warm_start_smbo
108
        self.max_sample_size = max_sample_size
109
        self.sampling = sampling
110
        self.search_space = search_space
111
        self.initialize = initialize
112
        self.constraints = constraints
113
        self.replacement = replacement
114
        self.xi = xi
115
        self.n_iter = n_iter
116
        self.experiment = experiment
117
        self.verbose = verbose
118
119
        super().__init__()
120
121
    def _get_gfo_class(self):
122
        """Get the GFO class to use.
123
124
        Returns
125
        -------
126
        class
127
            The GFO class to use. One of the concrete GFO classes
128
        """
129
        from gradient_free_optimizers import BayesianOptimizer
130
131
        return BayesianOptimizer
132
133
    @classmethod
134
    def get_test_params(cls, parameter_set="default"):
135
        """Get the test parameters for the optimizer.
136
137
        Returns
138
        -------
139
        dict with str keys
140
            The test parameters dictionary.
141
        """
142
        import numpy as np
143
144
        params = super().get_test_params()
145
        experiment = params[0]["experiment"]
146
        more_params = {
147
            "experiment": experiment,
148
            "xi": 0.33,
149
            "search_space": {
150
                "C": [0.01, 0.1, 1, 10],
151
                "gamma": [0.0001, 0.01, 0.1, 1, 10],
152
            },
153
            "n_iter": 100,
154
        }
155
        params.append(more_params)
156
        return params
157