1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
from .opt_args import Arguments |
7
|
|
|
from .distribution import Distribution |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
from .optimizers import ( |
11
|
|
|
HillClimbingOptimizer, |
12
|
|
|
StochasticHillClimbingOptimizer, |
13
|
|
|
TabuOptimizer, |
14
|
|
|
RandomSearchOptimizer, |
15
|
|
|
RandomRestartHillClimbingOptimizer, |
16
|
|
|
RandomAnnealingOptimizer, |
17
|
|
|
SimulatedAnnealingOptimizer, |
18
|
|
|
StochasticTunnelingOptimizer, |
19
|
|
|
ParallelTemperingOptimizer, |
20
|
|
|
ParticleSwarmOptimizer, |
21
|
|
|
EvolutionStrategyOptimizer, |
22
|
|
|
BayesianOptimizer, |
23
|
|
|
) |
24
|
|
|
|
25
|
|
|
optimizer_dict = { |
26
|
|
|
"HillClimbing": HillClimbingOptimizer, |
27
|
|
|
"StochasticHillClimbing": StochasticHillClimbingOptimizer, |
28
|
|
|
"TabuSearch": TabuOptimizer, |
29
|
|
|
"RandomSearch": RandomSearchOptimizer, |
30
|
|
|
"RandomRestartHillClimbing": RandomRestartHillClimbingOptimizer, |
31
|
|
|
"RandomAnnealing": RandomAnnealingOptimizer, |
32
|
|
|
"SimulatedAnnealing": SimulatedAnnealingOptimizer, |
33
|
|
|
"StochasticTunneling": StochasticTunnelingOptimizer, |
34
|
|
|
"ParallelTempering": ParallelTemperingOptimizer, |
35
|
|
|
"ParticleSwarm": ParticleSwarmOptimizer, |
36
|
|
|
"EvolutionStrategy": EvolutionStrategyOptimizer, |
37
|
|
|
"Bayesian": BayesianOptimizer, |
38
|
|
|
} |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
class HyperactiveCore: |
42
|
|
|
def __init__(self, _main_args_): |
43
|
|
|
self._main_args_ = _main_args_ |
44
|
|
|
self._opt_args_ = Arguments(**self._main_args_.opt_para) |
45
|
|
|
|
46
|
|
|
def run(self): |
47
|
|
|
optimizer_class = optimizer_dict[self._main_args_.optimizer] |
48
|
|
|
|
49
|
|
|
dist = Distribution() |
50
|
|
|
dist.dist(optimizer_class, self._main_args_, self._opt_args_) |
51
|
|
|
|
52
|
|
|
self.results = dist.results |
53
|
|
|
self.pos_list = dist.pos |
54
|
|
|
# self.para_list = None |
55
|
|
|
self.score_list = dist.scores |
56
|
|
|
|
57
|
|
|
self.eval_times = dist.eval_times |
58
|
|
|
self.iter_times = dist.iter_times |
59
|
|
|
self.best_scores = dist.best_scores |
60
|
|
|
|