1
|
|
|
import GPy |
2
|
|
|
from sklearn.model_selection import cross_val_score |
3
|
|
|
from sklearn.ensemble import GradientBoostingClassifier |
4
|
|
|
from sklearn.datasets import load_breast_cancer |
5
|
|
|
from hyperactive import Hyperactive |
6
|
|
|
|
7
|
|
|
data = load_breast_cancer() |
8
|
|
|
X, y = data.data, data.target |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def model(para, X, y): |
12
|
|
|
gbc = GradientBoostingClassifier( |
13
|
|
|
n_estimators=para["n_estimators"], |
14
|
|
|
max_depth=para["max_depth"], |
15
|
|
|
min_samples_split=para["min_samples_split"], |
16
|
|
|
) |
17
|
|
|
scores = cross_val_score(gbc, X, y, cv=3) |
18
|
|
|
|
19
|
|
|
return scores.mean() |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
search_config = { |
23
|
|
|
model: { |
24
|
|
|
"n_estimators": range(10, 100, 10), |
25
|
|
|
"max_depth": range(2, 12), |
26
|
|
|
"min_samples_split": range(2, 12), |
27
|
|
|
} |
28
|
|
|
} |
29
|
|
|
|
30
|
|
|
class GPR: |
31
|
|
|
def __init__(self): |
32
|
|
|
kernel = GPy.kern.RBF(input_dim=1, variance=1., lengthscale=1.) |
33
|
|
|
|
34
|
|
|
def fit(self, X, y): |
35
|
|
|
m = GPy.models.GPRegression(X, y, kernel) |
|
|
|
|
36
|
|
|
m.optimize(messages=True) |
37
|
|
|
|
38
|
|
|
def predict(self, X): |
39
|
|
|
return m.predict(X) |
|
|
|
|
40
|
|
|
|
41
|
|
|
bayes_opt = {"Bayesian": {"gpr": GPR()}} |
42
|
|
|
|
43
|
|
|
opt = Hyperactive(X, y) |
44
|
|
|
opt.search(search_config, n_iter=30, optimizer=bayes_opt) |
45
|
|
|
|