|
1
|
|
|
import pytest |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
|
|
4
|
|
|
from ._parametrize import optimizers |
|
5
|
|
|
|
|
6
|
|
|
|
|
7
|
|
|
def objective_function(opt): |
|
8
|
|
|
score = -opt["x1"] * opt["x1"] |
|
9
|
|
|
return score |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
def objective_function_m5(opt): |
|
13
|
|
|
score = -(opt["x1"] - 5) * (opt["x1"] - 5) |
|
14
|
|
|
return score |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
def objective_function_p5(opt): |
|
18
|
|
|
score = -(opt["x1"] + 5) * (opt["x1"] + 5) |
|
19
|
|
|
return score |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
search_space_0 = {"x1": np.arange(-100, 101, 1)} |
|
23
|
|
|
search_space_1 = {"x1": np.arange(0, 101, 1)} |
|
24
|
|
|
search_space_2 = {"x1": np.arange(-100, 1, 1)} |
|
25
|
|
|
|
|
26
|
|
|
search_space_3 = {"x1": np.arange(-10, 11, 0.1)} |
|
27
|
|
|
search_space_4 = {"x1": np.arange(0, 11, 0.1)} |
|
28
|
|
|
search_space_5 = {"x1": np.arange(-10, 1, 0.1)} |
|
29
|
|
|
|
|
30
|
|
|
search_space_6 = {"x1": np.arange(-0.0000000003, 0.0000000003, 0.0000000001)} |
|
31
|
|
|
search_space_7 = {"x1": np.arange(0, 0.0000000003, 0.0000000001)} |
|
32
|
|
|
search_space_8 = {"x1": np.arange(-0.0000000003, 0, 0.0000000001)} |
|
33
|
|
|
|
|
34
|
|
|
objective_para = ( |
|
35
|
|
|
"objective", |
|
36
|
|
|
[ |
|
37
|
|
|
(objective_function), |
|
38
|
|
|
(objective_function_m5), |
|
39
|
|
|
(objective_function_p5), |
|
40
|
|
|
], |
|
41
|
|
|
) |
|
42
|
|
|
|
|
43
|
|
|
search_space_para = ( |
|
44
|
|
|
"search_space", |
|
45
|
|
|
[ |
|
46
|
|
|
(search_space_0), |
|
47
|
|
|
(search_space_1), |
|
48
|
|
|
(search_space_2), |
|
49
|
|
|
(search_space_3), |
|
50
|
|
|
(search_space_4), |
|
51
|
|
|
(search_space_5), |
|
52
|
|
|
(search_space_6), |
|
53
|
|
|
(search_space_7), |
|
54
|
|
|
(search_space_8), |
|
55
|
|
|
], |
|
56
|
|
|
) |
|
57
|
|
|
|
|
58
|
|
|
|
|
59
|
|
|
@pytest.mark.parametrize(*objective_para) |
|
60
|
|
|
@pytest.mark.parametrize(*search_space_para) |
|
61
|
|
|
@pytest.mark.parametrize(*optimizers) |
|
62
|
|
|
def test_best_results_0(Optimizer, search_space, objective): |
|
63
|
|
|
search_space = search_space |
|
64
|
|
|
objective_function = objective |
|
65
|
|
|
|
|
66
|
|
|
initialize = {"vertices": 2} |
|
67
|
|
|
|
|
68
|
|
|
opt = Optimizer() |
|
69
|
|
|
opt.init(search_space, initialize) |
|
70
|
|
|
opt.search(objective_function, n_iter=10) |
|
71
|
|
|
|
|
72
|
|
|
assert opt.best_score == objective_function(opt.best_para) |
|
73
|
|
|
|