Passed
Push — master ( 8e1ab0...b032b3 )
by Simon
01:32
created

hyperactive.process._process_()   B

Complexity

Conditions 2

Size

Total Lines 48
Code Lines 41

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 2
eloc 41
nop 12
dl 0
loc 48
rs 8.896
c 0
b 0
f 0

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
6
def _process_(
7
    nth_process,
8
    objective_function,
9
    search_space,
10
    optimizer,
11
    n_iter,
12
    memory,
13
    memory_warm_start,
14
    max_time,
15
    max_score,
16
    random_state,
17
    verbosity,
18
    **kwargs
19
):
20
    if "progress_bar" in verbosity:
21
        verbosity_gfo = ["progress_bar"]
22
    else:
23
        verbosity_gfo = []
24
25
    optimizer.search(
26
        objective_function=objective_function,
27
        n_iter=n_iter,
28
        max_time=max_time,
29
        max_score=max_score,
30
        memory=memory,
31
        memory_warm_start=memory_warm_start,
32
        verbosity=verbosity_gfo,
33
        random_state=random_state,
34
        nth_process=nth_process,
35
    )
36
37
    optimizer.print_info(
38
        verbosity,
39
        objective_function,
40
        optimizer.best_score,
41
        optimizer.best_para,
42
        optimizer.eval_time,
43
        optimizer.iter_time,
44
        n_iter,
45
    )
46
47
    return {
48
        "nth_process": nth_process,
49
        "best_para": optimizer.best_para,
50
        "best_score": optimizer.best_score,
51
        "positions": optimizer.positions,
52
        "results": optimizer.results,
53
        "memory_values_df": optimizer.memory_values_df,
54
    }
55