1
|
|
|
import time |
2
|
|
|
import numpy as np |
3
|
|
|
from sklearn.datasets import load_breast_cancer |
4
|
|
|
from sklearn.model_selection import cross_val_score |
5
|
|
|
from sklearn.tree import DecisionTreeClassifier |
6
|
|
|
|
7
|
|
|
from hyperactive import Hyperactive |
8
|
|
|
from hyperactive.optimizers import ( |
9
|
|
|
RandomSearchOptimizer, |
10
|
|
|
HillClimbingOptimizer, |
11
|
|
|
) |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
def objective_function(para): |
15
|
|
|
score = -para["x1"] * para["x1"] |
16
|
|
|
return score |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
search_space = { |
20
|
|
|
"x1": list(np.arange(0, 100000, 0.1)), |
21
|
|
|
} |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
def test_max_score_0(): |
25
|
|
|
def objective_function(para): |
26
|
|
|
score = -para["x1"] * para["x1"] |
27
|
|
|
return score |
28
|
|
|
|
29
|
|
|
search_space = { |
30
|
|
|
"x1": list(np.arange(0, 100, 0.1)), |
31
|
|
|
} |
32
|
|
|
|
33
|
|
|
max_score = -9999 |
34
|
|
|
|
35
|
|
|
opt = HillClimbingOptimizer( |
36
|
|
|
epsilon=0.01, |
37
|
|
|
rand_rest_p=0, |
38
|
|
|
) |
39
|
|
|
|
40
|
|
|
hyper = Hyperactive() |
41
|
|
|
hyper.add_search( |
42
|
|
|
objective_function, |
43
|
|
|
search_space, |
44
|
|
|
optimizer=opt, |
45
|
|
|
n_iter=100000, |
46
|
|
|
initialize={"warm_start": [{"x1": 99}]}, |
47
|
|
|
max_score=max_score, |
48
|
|
|
) |
49
|
|
|
hyper.run() |
50
|
|
|
|
51
|
|
|
print("\n Results head \n", hyper.search_data(objective_function).head()) |
52
|
|
|
print("\n Results tail \n", hyper.search_data(objective_function).tail()) |
53
|
|
|
|
54
|
|
|
print("\nN iter:", len(hyper.search_data(objective_function))) |
55
|
|
|
|
56
|
|
|
assert -100 > hyper.best_score(objective_function) > max_score |
57
|
|
|
|
58
|
|
|
|
59
|
|
|
def test_max_score_1(): |
60
|
|
|
def objective_function(para): |
61
|
|
|
score = -para["x1"] * para["x1"] |
62
|
|
|
time.sleep(0.01) |
63
|
|
|
return score |
64
|
|
|
|
65
|
|
|
search_space = { |
66
|
|
|
"x1": list(np.arange(0, 100, 0.1)), |
67
|
|
|
} |
68
|
|
|
|
69
|
|
|
max_score = -9999 |
70
|
|
|
|
71
|
|
|
c_time = time.perf_counter() |
72
|
|
|
hyper = Hyperactive() |
73
|
|
|
hyper.add_search( |
74
|
|
|
objective_function, |
75
|
|
|
search_space, |
76
|
|
|
n_iter=100000, |
77
|
|
|
initialize={"warm_start": [{"x1": 99}]}, |
78
|
|
|
max_score=max_score, |
79
|
|
|
) |
80
|
|
|
hyper.run() |
81
|
|
|
diff_time = time.perf_counter() - c_time |
82
|
|
|
|
83
|
|
|
print("\n Results head \n", hyper.search_data(objective_function).head()) |
84
|
|
|
print("\n Results tail \n", hyper.search_data(objective_function).tail()) |
85
|
|
|
|
86
|
|
|
print("\nN iter:", len(hyper.search_data(objective_function))) |
87
|
|
|
|
88
|
|
|
assert diff_time < 1 |
89
|
|
|
|