| Total Complexity | 1 |
| Total Lines | 35 |
| Duplicated Lines | 34.29 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
| 1 | from sklearn.datasets import load_breast_cancer |
||
| 2 | from sklearn.model_selection import cross_val_score |
||
| 3 | from rgf.sklearn import RGFClassifier |
||
| 4 | |||
| 5 | from hyperactive import Hyperactive |
||
| 6 | |||
| 7 | data = load_breast_cancer() |
||
| 8 | X, y = data.data, data.target |
||
| 9 | |||
| 10 | |||
| 11 | View Code Duplication | def model(para, X, y): |
|
|
|
|||
| 12 | rgf = RGFClassifier( |
||
| 13 | max_leaf=para["max_leaf"], |
||
| 14 | reg_depth=para["reg_depth"], |
||
| 15 | min_samples_leaf=para["min_samples_leaf"], |
||
| 16 | algorithm="RGF_Sib", |
||
| 17 | test_interval=100, |
||
| 18 | verbose=False, |
||
| 19 | ) |
||
| 20 | scores = cross_val_score(rgf, X, y, cv=3) |
||
| 21 | |||
| 22 | return scores.mean() |
||
| 23 | |||
| 24 | |||
| 25 | search_config = { |
||
| 26 | model: { |
||
| 27 | "max_leaf": range(1000, 10000, 100), |
||
| 28 | "reg_depth": range(1, 21), |
||
| 29 | "min_samples_leaf": range(1, 21), |
||
| 30 | } |
||
| 31 | } |
||
| 32 | |||
| 33 | opt = Hyperactive(X, y) |
||
| 34 | opt.search(search_config, n_iter=5) |
||
| 35 |