Passed
Pull Request — master (#110)
by
unknown
11:00 queued 09:30
created

hyperactive.experiment.toy._sphere   A

Complexity

Total Complexity 5

Size/Duplication

Total Lines 112
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
wmc 5
eloc 25
dl 0
loc 112
rs 10
c 0
b 0
f 0

5 Methods

Rating   Name   Duplication   Size   Complexity  
A SphereFunction._paramnames() 0 2 1
A SphereFunction._score() 0 2 1
A SphereFunction._get_score_params() 0 15 1
A SphereFunction.__init__() 0 5 1
A SphereFunction.get_test_params() 0 36 1
1
import numpy as np
2
3
from hyperactive.base import BaseExperiment
4
5
6
class SphereFunction(BaseExperiment):
7
    """Simple Sphere function, common benchmark for optimization algorithms.
8
9
    Sphere function parameterized by the formula:
10
11
    .. math::
12
        f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^n x_i^2 + c
13
14
    where :math:`c` is a constant offset added to the sum of squares,
15
    and :math:`n` is the number of dimensions.
16
    Both :math:`c` (= `const`) and :math:`n` (= `n_dim`) can be set as parameters.
17
18
    This function is a common test function for optimization algorithms.
19
20
    Parameters
21
    ----------
22
    const : float, optional, default=0
23
        A constant offset added to the sum of squares.
24
    n_dim : int, optional, default=2
25
        The number of dimensions for the Sphere function. The default is 2.
26
27
    Example
28
    -------
29
    >>> from hyperactive.experiment.toy import SphereFunction
30
    >>> sphere = SphereFunction(const=0, n_dim=3)
31
    >>> params = {"x0": 1, "x1": 2, "x2": 3}
32
    >>> score, add_info = sphere.score(params)
33
34
    Quick call without metadata return or dictionary:
35
    >>> score = sphere(x0=1, x1=2, x2=3)
36
37
    Different number of dimensions changes the parameter names:
38
    >>> sphere4D = SphereFunction(const=0, n_dim=4)
39
    >>> score4D = sphere4D(x0=1, x1=2, x2=3, x3=4)
40
    """
41
42
    _tags = {
43
        "property:randomness": "deterministic",  # random or deterministic
44
        # if deterministic, two calls of score will result in the same value
45
        # random = two calls may result in different values; same as "stochastic"
46
    }
47
48
    def __init__(self, const=0, n_dim=2):
49
        self.const = const
50
        self.n_dim = n_dim
51
52
        super().__init__()
53
54
    def _paramnames(self):
55
        return [f"x{i}" for i in range(self.n_dim)]
56
57
    def _score(self, params):
58
        return np.sum(np.array(params) ** 2) + self.const, {}
59
60
    @classmethod
61
    def get_test_params(cls, parameter_set="default"):
62
        """Return testing parameter settings for the skbase object.
63
64
        ``get_test_params`` is a unified interface point to store
65
        parameter settings for testing purposes. This function is also
66
        used in ``create_test_instance`` and ``create_test_instances_and_names``
67
        to construct test instances.
68
69
        ``get_test_params`` should return a single ``dict``, or a ``list`` of ``dict``.
70
71
        Each ``dict`` is a parameter configuration for testing,
72
        and can be used to construct an "interesting" test instance.
73
        A call to ``cls(**params)`` should
74
        be valid for all dictionaries ``params`` in the return of ``get_test_params``.
75
76
        The ``get_test_params`` need not return fixed lists of dictionaries,
77
        it can also return dynamic or stochastic parameter settings.
78
79
        Parameters
80
        ----------
81
        parameter_set : str, default="default"
82
            Name of the set of test parameters to return, for use in tests. If no
83
            special parameters are defined for a value, will return `"default"` set.
84
85
        Returns
86
        -------
87
        params : dict or list of dict, default = {}
88
            Parameters to create testing instances of the class
89
            Each dict are parameters to construct an "interesting" test instance, i.e.,
90
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
91
            `create_test_instance` uses the first (or only) dictionary in `params`
92
        """
93
        params0 = {}
94
        params1 = {"ndim": 3, "const": 1.0}
95
        return [params0, params1]
96
97
    @classmethod
98
    def _get_score_params(self):
99
        """Return settings for the score function.
100
101
        Returns a list, the i-th element corresponds to self.get_test_params()[i].
102
        It should be a valid call for self.score.
103
104
        Returns
105
        -------
106
        list of dict
107
            The parameters to be used for scoring.
108
        """
109
        score_params0 = {"x0": 0, "x1": 0}
110
        score_params1 = {"x0": 1, "x1": 2, "x2": 3}
111
        return [score_params0, score_params1]
112