| Conditions | 9 | 
| Total Lines | 188 | 
| Code Lines | 54 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | """Registry lookup methods.  | 
            ||
| 20 | def all_objects(  | 
            ||
| 21 | object_types=None,  | 
            ||
| 22 | filter_tags=None,  | 
            ||
| 23 | exclude_objects=None,  | 
            ||
| 24 | return_names=True,  | 
            ||
| 25 | as_dataframe=False,  | 
            ||
| 26 | return_tags=None,  | 
            ||
| 27 | suppress_import_stdout=True,  | 
            ||
| 28 | ):  | 
            ||
| 29 | """Get a list of all objects from hyperactive.  | 
            ||
| 30 | |||
| 31 | This function crawls the module and gets all classes that inherit  | 
            ||
| 32 | from skbase compatible base classes.  | 
            ||
| 33 | |||
| 34 | Not included are: the base classes themselves, classes defined in test  | 
            ||
| 35 | modules.  | 
            ||
| 36 | |||
| 37 | Parameters  | 
            ||
| 38 | ----------  | 
            ||
| 39 | object_types: str, list of str, optional (default=None)  | 
            ||
| 40 | Which kind of objects should be returned.  | 
            ||
| 41 | |||
| 42 | * if None, no filter is applied and all objects are returned.  | 
            ||
| 43 | * if str or list of str, strings define scitypes specified in search  | 
            ||
| 44 | only objects that are of (at least) one of the scitypes are returned  | 
            ||
| 45 | |||
| 46 | return_names: bool, optional (default=True)  | 
            ||
| 47 | |||
| 48 | * if True, estimator class name is included in the ``all_objects``  | 
            ||
| 49 | return in the order: name, estimator class, optional tags, either as  | 
            ||
| 50 | a tuple or as pandas.DataFrame columns  | 
            ||
| 51 | * if False, estimator class name is removed from the ``all_objects`` return.  | 
            ||
| 52 | |||
| 53 | filter_tags: dict of (str or list of str or re.Pattern), optional (default=None)  | 
            ||
| 54 | For a list of valid tag strings, use the registry.all_tags utility.  | 
            ||
| 55 | |||
| 56 | ``filter_tags`` subsets the returned objects as follows:  | 
            ||
| 57 | |||
| 58 | * each key/value pair is statement in "and"/conjunction  | 
            ||
| 59 | * key is tag name to sub-set on  | 
            ||
| 60 | * value str or list of string are tag values  | 
            ||
| 61 | * condition is "key must be equal to value, or in set(value)"  | 
            ||
| 62 | |||
| 63 | In detail, he return will be filtered to keep exactly the classes  | 
            ||
| 64 | where tags satisfy all the filter conditions specified by ``filter_tags``.  | 
            ||
| 65 | Filter conditions are as follows, for ``tag_name: search_value`` pairs in  | 
            ||
| 66 | the ``filter_tags`` dict, applied to a class ``klass``:  | 
            ||
| 67 | |||
| 68 | - If ``klass`` does not have a tag with name ``tag_name``, it is excluded.  | 
            ||
| 69 | Otherwise, let ``tag_value`` be the value of the tag with name ``tag_name``.  | 
            ||
| 70 | - If ``search_value`` is a string, and ``tag_value`` is a string,  | 
            ||
| 71 | the filter condition is that ``search_value`` must match the tag value.  | 
            ||
| 72 | - If ``search_value`` is a string, and ``tag_value`` is a list,  | 
            ||
| 73 | the filter condition is that ``search_value`` is contained in ``tag_value``.  | 
            ||
| 74 | - If ``search_value`` is a ``re.Pattern``, and ``tag_value`` is a string,  | 
            ||
| 75 | the filter condition is that ``search_value.fullmatch(tag_value)``  | 
            ||
| 76 | is true, i.e., the regex matches the tag value.  | 
            ||
| 77 | - If ``search_value`` is a ``re.Pattern``, and ``tag_value`` is a list,  | 
            ||
| 78 | the filter condition is that at least one element of ``tag_value``  | 
            ||
| 79 | matches the regex.  | 
            ||
| 80 | - If ``search_value`` is iterable, then the filter condition is that  | 
            ||
| 81 | at least one element of ``search_value`` satisfies the above conditions,  | 
            ||
| 82 | applied to ``tag_value``.  | 
            ||
| 83 | |||
| 84 | Note: ``re.Pattern`` is supported only from ``scikit-base`` version 0.8.0.  | 
            ||
| 85 | |||
| 86 | exclude_objects: str, list of str, optional (default=None)  | 
            ||
| 87 | Names of objects to exclude.  | 
            ||
| 88 | |||
| 89 | as_dataframe: bool, optional (default=False)  | 
            ||
| 90 | |||
| 91 | * True: ``all_objects`` will return a ``pandas.DataFrame`` with named  | 
            ||
| 92 | columns for all of the attributes being returned.  | 
            ||
| 93 | * False: ``all_objects`` will return a list (either a list of  | 
            ||
| 94 | objects or a list of tuples, see Returns)  | 
            ||
| 95 | |||
| 96 | return_tags: str or list of str, optional (default=None)  | 
            ||
| 97 | Names of tags to fetch and return each estimator's value of.  | 
            ||
| 98 | For a list of valid tag strings, use the ``registry.all_tags`` utility.  | 
            ||
| 99 | if str or list of str,  | 
            ||
| 100 | the tag values named in return_tags will be fetched for each  | 
            ||
| 101 | estimator and will be appended as either columns or tuple entries.  | 
            ||
| 102 | |||
| 103 | suppress_import_stdout : bool, optional. Default=True  | 
            ||
| 104 | whether to suppress stdout printout upon import.  | 
            ||
| 105 | |||
| 106 | Returns  | 
            ||
| 107 | -------  | 
            ||
| 108 | all_objects will return one of the following:  | 
            ||
| 109 | |||
| 110 | 1. list of objects, if ``return_names=False``, and ``return_tags`` is None  | 
            ||
| 111 | |||
| 112 | 2. list of tuples (optional estimator name, class, optional estimator  | 
            ||
| 113 | tags), if ``return_names=True`` or ``return_tags`` is not ``None``.  | 
            ||
| 114 | |||
| 115 | 3. ``pandas.DataFrame`` if ``as_dataframe = True``  | 
            ||
| 116 | |||
| 117 | if list of objects:  | 
            ||
| 118 | entries are objects matching the query,  | 
            ||
| 119 | in alphabetical order of estimator name  | 
            ||
| 120 | |||
| 121 | if list of tuples:  | 
            ||
| 122 | list of (optional estimator name, estimator, optional estimator  | 
            ||
| 123 | tags) matching the query, in alphabetical order of estimator name,  | 
            ||
| 124 | where  | 
            ||
| 125 | ``name`` is the estimator name as string, and is an  | 
            ||
| 126 | optional return  | 
            ||
| 127 | ``estimator`` is the actual estimator  | 
            ||
| 128 | ``tags`` are the estimator's values for each tag in return_tags  | 
            ||
| 129 | and is an optional return.  | 
            ||
| 130 | |||
| 131 | if ``DataFrame``:  | 
            ||
| 132 | column names represent the attributes contained in each column.  | 
            ||
| 133 | "objects" will be the name of the column of objects, "names"  | 
            ||
| 134 | will be the name of the column of estimator class names and the string(s)  | 
            ||
| 135 | passed in return_tags will serve as column names for all columns of  | 
            ||
| 136 | tags that were optionally requested.  | 
            ||
| 137 | |||
| 138 | Examples  | 
            ||
| 139 | --------  | 
            ||
| 140 | >>> from hyperactive._registry import all_objects  | 
            ||
| 141 | >>> # return a complete list of objects as pd.Dataframe  | 
            ||
| 142 | >>> all_objects(as_dataframe=True) # doctest: +SKIP  | 
            ||
| 143 | |||
| 144 | References  | 
            ||
| 145 | ----------  | 
            ||
| 146 | Adapted version of sktime's ``all_estimators``,  | 
            ||
| 147 | which is an evolution of scikit-learn's ``all_estimators``  | 
            ||
| 148 | """  | 
            ||
| 149 | MODULES_TO_IGNORE = (  | 
            ||
| 150 | "tests",  | 
            ||
| 151 | "setup",  | 
            ||
| 152 | "contrib",  | 
            ||
| 153 | "utils",  | 
            ||
| 154 | "all",  | 
            ||
| 155 | )  | 
            ||
| 156 | |||
| 157 | result = []  | 
            ||
| 158 | ROOT = str(Path(__file__).parent.parent) # package root directory  | 
            ||
| 159 | |||
| 160 | def _coerce_to_str(obj):  | 
            ||
| 161 | if isinstance(obj, (list, tuple)):  | 
            ||
| 162 | return [_coerce_to_str(o) for o in obj]  | 
            ||
| 163 | if isclass(obj):  | 
            ||
| 164 |             obj = obj.get_tag("object_type") | 
            ||
| 165 | return obj  | 
            ||
| 166 | |||
| 167 | def _coerce_to_list_of_str(obj):  | 
            ||
| 168 | obj = _coerce_to_str(obj)  | 
            ||
| 169 | if isinstance(obj, str):  | 
            ||
| 170 | return [obj]  | 
            ||
| 171 | return obj  | 
            ||
| 172 | |||
| 173 | if object_types is not None:  | 
            ||
| 174 | object_types = _coerce_to_list_of_str(object_types)  | 
            ||
| 175 | object_types = list(set(object_types))  | 
            ||
| 176 | |||
| 177 | if object_types is not None:  | 
            ||
| 178 | if filter_tags is None:  | 
            ||
| 179 |             filter_tags = {} | 
            ||
| 180 | elif isinstance(filter_tags, str):  | 
            ||
| 181 |             filter_tags = {filter_tags: True} | 
            ||
| 182 | else:  | 
            ||
| 183 | filter_tags = filter_tags.copy()  | 
            ||
| 184 | |||
| 185 | if "object_type" in filter_tags:  | 
            ||
| 186 | obj_field = filter_tags["object_type"]  | 
            ||
| 187 | obj_field = _coerce_to_list_of_str(obj_field)  | 
            ||
| 188 | obj_field = obj_field + object_types  | 
            ||
| 189 | else:  | 
            ||
| 190 | obj_field = object_types  | 
            ||
| 191 | |||
| 192 | filter_tags["object_type"] = obj_field  | 
            ||
| 193 | |||
| 194 | result = _all_objects(  | 
            ||
| 195 | object_types=None,  | 
            ||
| 196 | filter_tags=filter_tags,  | 
            ||
| 197 | exclude_objects=exclude_objects,  | 
            ||
| 198 | return_names=return_names,  | 
            ||
| 199 | as_dataframe=as_dataframe,  | 
            ||
| 200 | return_tags=return_tags,  | 
            ||
| 201 | suppress_import_stdout=suppress_import_stdout,  | 
            ||
| 202 | package_name="hyperactive",  | 
            ||
| 203 | path=ROOT,  | 
            ||
| 204 | modules_to_ignore=MODULES_TO_IGNORE,  | 
            ||
| 205 | )  | 
            ||
| 206 | |||
| 207 | return result  | 
            ||
| 208 | |||
| 241 |