Passed
Push — master ( b98610...28dad0 )
by Simon
01:18
created

tensorflow_example.cnn()   A

Complexity

Conditions 1

Size

Total Lines 16
Code Lines 12

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 12
nop 1
dl 0
loc 16
rs 9.8
c 0
b 0
f 0
1
import tensorflow as tf
2
3
from hyperactive import Hyperactive
4
5
mnist = tf.keras.datasets.mnist
6
7
(x_train, y_train), (x_test, y_test) = mnist.load_data()
8
x_train, x_test = x_train / 255.0, x_test / 255.0
9
10
11
def cnn(params):
12
    nn = tf.keras.models.Sequential(
13
        [
14
            tf.keras.layers.Flatten(input_shape=(28, 28)),
15
            tf.keras.layers.Dense(128, activation="relu"),
16
            tf.keras.layers.Dropout(0.2),
17
            tf.keras.layers.Dense(10),
18
        ]
19
    )
20
    loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
21
22
    nn.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
23
    nn.fit(x_train, y_train, epochs=5)
24
    _, score = nn.evaluate(x=x_test, y=y_test)
25
26
    return score
27
28
29
search_space = {
30
    "filters_0": [16, 32, 64],
31
    "filters_1": [16, 32, 64],
32
    "dense_0": list(range(100, 2000, 100)),
33
}
34
35
hyper = Hyperactive()
36
hyper.add_search(cnn, search_space, n_iter=5)
37
hyper.run()
38