1
|
|
|
from sklearn.datasets import load_breast_cancer |
2
|
|
|
from sklearn.model_selection import cross_val_score |
3
|
|
|
from mlxtend.classifier import EnsembleVoteClassifier |
4
|
|
|
from sklearn.ensemble import GradientBoostingClassifier |
5
|
|
|
from sklearn.neural_network import MLPClassifier |
6
|
|
|
from sklearn.svm import SVC |
7
|
|
|
from hyperactive import Hyperactive |
8
|
|
|
|
9
|
|
|
data = load_breast_cancer() |
10
|
|
|
X, y = data.data, data.target |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def model(para, X, y): |
14
|
|
|
gbc = GradientBoostingClassifier( |
15
|
|
|
n_estimators=para["n_estimators"], max_depth=para["max_depth"] |
16
|
|
|
) |
17
|
|
|
mlp = MLPClassifier(hidden_layer_sizes=para["hidden_layer_sizes"]) |
18
|
|
|
svc = SVC(gamma="auto", probability=True) |
19
|
|
|
|
20
|
|
|
eclf = EnsembleVoteClassifier( |
21
|
|
|
clfs=[gbc, mlp, svc], weights=[2, 1, 1], voting="soft" |
22
|
|
|
) |
23
|
|
|
|
24
|
|
|
scores = cross_val_score(eclf, X, y, cv=3) |
25
|
|
|
|
26
|
|
|
return scores.mean() |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
search_config = { |
30
|
|
|
model: { |
31
|
|
|
"n_estimators": range(10, 100, 10), |
32
|
|
|
"max_depth": range(2, 12), |
33
|
|
|
"hidden_layer_sizes": (range(10, 100, 10),), |
34
|
|
|
} |
35
|
|
|
} |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
opt = Hyperactive(search_config, n_iter=30) |
39
|
|
|
opt.search(X, y) |
40
|
|
|
|