1
|
|
|
"""Base class for optimizer.""" |
2
|
|
|
|
3
|
|
|
from typing import Union, List, Dict |
4
|
|
|
import multiprocessing as mp |
5
|
|
|
import pandas as pd |
6
|
|
|
|
7
|
|
|
from .backend_stuff.search_space import SearchSpace |
8
|
|
|
from .search import Search |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
from ..composite_optimizer import CompositeOptimizer |
12
|
|
|
|
13
|
|
|
from skbase.base import BaseObject |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class BaseOptimizer(BaseObject): |
17
|
|
|
"""Base class for optimizer.""" |
18
|
|
|
|
19
|
|
|
n_search: int |
20
|
|
|
searches: list |
21
|
|
|
opt_pros: dict |
22
|
|
|
|
23
|
|
|
def __init__(self, optimizer_class, opt_params): |
24
|
|
|
super().__init__() |
25
|
|
|
|
26
|
|
|
self.optimizer_class = optimizer_class |
27
|
|
|
self.opt_params = opt_params |
28
|
|
|
|
29
|
|
|
self.n_search = 0 |
30
|
|
|
self.searches = [] |
31
|
|
|
|
32
|
|
|
@staticmethod |
33
|
|
|
def _default_search_id(search_id, objective_function): |
34
|
|
|
if not search_id: |
35
|
|
|
search_id = objective_function.__name__ |
36
|
|
|
return search_id |
37
|
|
|
|
38
|
|
|
@staticmethod |
39
|
|
|
def check_list(search_space): |
40
|
|
|
for key in search_space.keys(): |
41
|
|
|
search_dim = search_space[key] |
42
|
|
|
|
43
|
|
|
error_msg = "Value in '{}' of search space dictionary must be of type list".format( |
44
|
|
|
key |
45
|
|
|
) |
46
|
|
|
if not isinstance(search_dim, list): |
47
|
|
|
print("Warning", error_msg) |
48
|
|
|
# raise ValueError(error_msg) |
49
|
|
|
|
50
|
|
|
def add_search( |
51
|
|
|
self, |
52
|
|
|
experiment: callable, |
53
|
|
|
search_space: Dict[str, list], |
54
|
|
|
n_iter: int, |
55
|
|
|
search_id=None, |
56
|
|
|
n_jobs: int = 1, |
57
|
|
|
verbosity: list = ["progress_bar", "print_results", "print_times"], |
58
|
|
|
initialize: Dict[str, int] = {"grid": 4, "random": 2, "vertices": 4}, |
59
|
|
|
constraints: List[callable] = None, |
60
|
|
|
pass_through: Dict = None, |
61
|
|
|
max_score: float = None, |
62
|
|
|
early_stopping: Dict = None, |
63
|
|
|
random_state: int = None, |
64
|
|
|
memory: Union[str, bool] = "share", |
65
|
|
|
memory_warm_start: pd.DataFrame = None, |
66
|
|
|
): |
67
|
|
|
""" |
68
|
|
|
Add a new optimization search process with specified parameters. |
69
|
|
|
|
70
|
|
|
Parameters: |
71
|
|
|
- experiment: Experiment class containing the objective-function to optimize. |
72
|
|
|
- search_space: Dictionary defining the search space for optimization. |
73
|
|
|
- n_iter: Number of iterations for the optimization process. |
74
|
|
|
- search_id: Identifier for the search process (default: None). |
75
|
|
|
- n_jobs: Number of parallel jobs to run (default: 1). |
76
|
|
|
- initialize: Dictionary specifying initialization parameters (default: {"grid": 4, "random": 2, "vertices": 4}). |
77
|
|
|
- constraints: List of constraint functions (default: None). |
78
|
|
|
- pass_through: Dictionary of additional parameters to pass through (default: None). |
79
|
|
|
- callbacks: Dictionary of callback functions (default: None). |
80
|
|
|
- catch: Dictionary of exceptions to catch during optimization (default: None). |
81
|
|
|
- max_score: Maximum score to achieve (default: None). |
82
|
|
|
- early_stopping: Dictionary specifying early stopping criteria (default: None). |
83
|
|
|
- random_state: Seed for random number generation (default: None). |
84
|
|
|
- memory: Option to share memory between processes (default: "share"). |
85
|
|
|
- memory_warm_start: DataFrame containing warm start memory (default: None). |
86
|
|
|
""" |
87
|
|
|
|
88
|
|
|
self.n_search += 1 |
89
|
|
|
|
90
|
|
|
self.check_list(search_space) |
91
|
|
|
|
92
|
|
|
constraints = constraints or [] |
93
|
|
|
pass_through = pass_through or {} |
94
|
|
|
early_stopping = early_stopping or {} |
95
|
|
|
|
96
|
|
|
search_id = self._default_search_id( |
97
|
|
|
search_id, experiment.objective_function |
98
|
|
|
) |
99
|
|
|
s_space = SearchSpace(search_space) |
100
|
|
|
self.verbosity = verbosity |
101
|
|
|
|
102
|
|
|
n_jobs = mp.cpu_count() if n_jobs == -1 else n_jobs |
103
|
|
|
|
104
|
|
|
for _ in range(n_jobs): |
105
|
|
|
search = Search(self.optimizer_class, self.opt_params) |
106
|
|
|
search.setup( |
107
|
|
|
experiment=experiment, |
108
|
|
|
s_space=s_space, |
109
|
|
|
n_iter=n_iter, |
110
|
|
|
initialize=initialize, |
111
|
|
|
constraints=constraints, |
112
|
|
|
pass_through=pass_through, |
113
|
|
|
callbacks=experiment.callbacks, |
114
|
|
|
catch=experiment.catch, |
115
|
|
|
max_score=max_score, |
116
|
|
|
early_stopping=early_stopping, |
117
|
|
|
random_state=random_state, |
118
|
|
|
memory=memory, |
119
|
|
|
memory_warm_start=memory_warm_start, |
120
|
|
|
verbosity=verbosity, |
121
|
|
|
) |
122
|
|
|
self.searches.append(search) |
123
|
|
|
|
124
|
|
|
@property |
125
|
|
|
def nth_search(self): |
126
|
|
|
return len(self.composite_opt.optimizers) |
127
|
|
|
|
128
|
|
|
def __add__(self, optimizer_instance): |
129
|
|
|
return CompositeOptimizer(self, optimizer_instance) |
130
|
|
|
|
131
|
|
|
def run( |
132
|
|
|
self, |
133
|
|
|
max_time=None, |
134
|
|
|
distribution: str = "multiprocessing", |
135
|
|
|
n_processes: Union[str, int] = "auto", |
136
|
|
|
): |
137
|
|
|
self.comp_opt = CompositeOptimizer(self) |
138
|
|
|
self.comp_opt.run(max_time, distribution, n_processes, self.verbosity) |
139
|
|
|
|
140
|
|
|
def best_para(self, id_): |
141
|
|
|
""" |
142
|
|
|
Retrieve the best parameters for a specific ID from the results. |
143
|
|
|
|
144
|
|
|
Parameters: |
145
|
|
|
- id_ (int): The ID of the parameters to retrieve. |
146
|
|
|
|
147
|
|
|
Returns: |
148
|
|
|
- Union[Dict[str, Union[int, float]], None]: The best parameters for the specified ID if found, otherwise None. |
149
|
|
|
|
150
|
|
|
Raises: |
151
|
|
|
- ValueError: If the objective function name is not recognized. |
152
|
|
|
""" |
153
|
|
|
|
154
|
|
|
return self.comp_opt.results_.best_para(id_) |
155
|
|
|
|
156
|
|
|
def best_score(self, id_): |
157
|
|
|
""" |
158
|
|
|
Return the best score for a specific ID from the results. |
159
|
|
|
|
160
|
|
|
Parameters: |
161
|
|
|
- id_ (int): The ID for which the best score is requested. |
162
|
|
|
""" |
163
|
|
|
|
164
|
|
|
return self.comp_opt.results_.best_score(id_) |
165
|
|
|
|
166
|
|
|
def search_data(self, id_, times=False): |
167
|
|
|
""" |
168
|
|
|
Retrieve search data for a specific ID from the results. Optionally exclude evaluation and iteration times if 'times' is set to False. |
169
|
|
|
|
170
|
|
|
Parameters: |
171
|
|
|
- id_ (int): The ID of the search data to retrieve. |
172
|
|
|
- times (bool, optional): Whether to exclude evaluation and iteration times. Defaults to False. |
173
|
|
|
|
174
|
|
|
Returns: |
175
|
|
|
- pd.DataFrame: The search data for the specified ID. |
176
|
|
|
""" |
177
|
|
|
|
178
|
|
|
search_data_ = self.comp_opt.results_.search_data( |
179
|
|
|
id_.objective_function |
180
|
|
|
) |
181
|
|
|
|
182
|
|
|
if times == False: |
183
|
|
|
search_data_.drop( |
184
|
|
|
labels=["eval_times", "iter_times"], |
185
|
|
|
axis=1, |
186
|
|
|
inplace=True, |
187
|
|
|
errors="ignore", |
188
|
|
|
) |
189
|
|
|
return search_data_ |
190
|
|
|
|