1
|
|
|
import time |
2
|
|
|
import numpy as np |
3
|
|
|
import pandas as pd |
4
|
|
|
from sklearn.datasets import load_breast_cancer |
5
|
|
|
from sklearn.model_selection import cross_val_score |
6
|
|
|
from sklearn.tree import DecisionTreeClassifier |
7
|
|
|
from sklearn.ensemble import GradientBoostingClassifier |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
from hyperactive import Hyperactive |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def objective_function(opt): |
14
|
|
|
score = -opt["x1"] * opt["x1"] |
15
|
|
|
return score |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
search_space = { |
19
|
|
|
"x1": list(np.arange(0, 10, 1)), |
20
|
|
|
} |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def test_memory_timeSave_0(): |
24
|
|
|
data = load_breast_cancer() |
25
|
|
|
X, y = data.data, data.target |
26
|
|
|
|
27
|
|
|
def objective_function(opt): |
28
|
|
|
dtc = DecisionTreeClassifier( |
29
|
|
|
min_samples_split=opt["min_samples_split"] |
30
|
|
|
) |
31
|
|
|
scores = cross_val_score(dtc, X, y, cv=5) |
32
|
|
|
|
33
|
|
|
return scores.mean() |
34
|
|
|
|
35
|
|
|
search_space = { |
36
|
|
|
"min_samples_split": np.arange(2, 20), |
37
|
|
|
} |
38
|
|
|
|
39
|
|
|
c_time1 = time.time() |
40
|
|
|
hyper = Hyperactive() |
41
|
|
|
hyper.add_search(objective_function, search_space, n_iter=100) |
42
|
|
|
hyper.run() |
43
|
|
|
diff_time1 = time.time() - c_time1 |
44
|
|
|
|
45
|
|
|
c_time2 = time.time() |
46
|
|
|
hyper = Hyperactive() |
47
|
|
|
hyper.add_search( |
48
|
|
|
objective_function, search_space, n_iter=100, memory=False |
49
|
|
|
) |
50
|
|
|
hyper.run() |
51
|
|
|
diff_time2 = time.time() - c_time2 |
52
|
|
|
|
53
|
|
|
assert diff_time1 < diff_time2 * 0.8 |
54
|
|
|
|
55
|
|
|
|
56
|
|
|
def test_memory_timeSave_1(): |
57
|
|
|
data = load_breast_cancer() |
58
|
|
|
X, y = data.data, data.target |
59
|
|
|
|
60
|
|
|
def objective_function(opt): |
61
|
|
|
dtc = DecisionTreeClassifier(max_depth=opt["max_depth"]) |
62
|
|
|
scores = cross_val_score(dtc, X, y, cv=5) |
63
|
|
|
|
64
|
|
|
return scores.mean() |
65
|
|
|
|
66
|
|
|
search_space = { |
67
|
|
|
"max_depth": list(np.arange(1, 101)), |
68
|
|
|
} |
69
|
|
|
|
70
|
|
|
results = pd.DataFrame(np.arange(1, 101), columns=["max_depth"]) |
71
|
|
|
results["score"] = 0 |
72
|
|
|
|
73
|
|
|
c_time1 = time.time() |
74
|
|
|
hyper = Hyperactive() |
75
|
|
|
hyper.add_search( |
76
|
|
|
objective_function, search_space, n_iter=300, memory_warm_start=results |
77
|
|
|
) |
78
|
|
|
hyper.run() |
79
|
|
|
diff_time1 = time.time() - c_time1 |
80
|
|
|
|
81
|
|
|
assert diff_time1 < 1 |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
def test_memory_warm_start(): |
85
|
|
|
data = load_breast_cancer() |
86
|
|
|
X, y = data.data, data.target |
87
|
|
|
|
88
|
|
|
def objective_function(opt): |
89
|
|
|
dtc = DecisionTreeClassifier( |
90
|
|
|
max_depth=opt["max_depth"], |
91
|
|
|
min_samples_split=opt["min_samples_split"], |
92
|
|
|
) |
93
|
|
|
scores = cross_val_score(dtc, X, y, cv=5) |
94
|
|
|
|
95
|
|
|
return scores.mean() |
96
|
|
|
|
97
|
|
|
search_space = { |
98
|
|
|
"max_depth": list(np.arange(1, 10)), |
99
|
|
|
"min_samples_split": list(np.arange(2, 20)), |
100
|
|
|
} |
101
|
|
|
|
102
|
|
|
c_time1 = time.time() |
103
|
|
|
hyper0 = Hyperactive() |
104
|
|
|
hyper0.add_search(objective_function, search_space, n_iter=300) |
105
|
|
|
hyper0.run() |
106
|
|
|
diff_time1 = time.time() - c_time1 |
107
|
|
|
|
108
|
|
|
c_time2 = time.time() |
109
|
|
|
|
110
|
|
|
results0 = hyper0.results(objective_function) |
111
|
|
|
|
112
|
|
|
hyper1 = Hyperactive() |
113
|
|
|
hyper1.add_search( |
114
|
|
|
objective_function, |
115
|
|
|
search_space, |
116
|
|
|
n_iter=300, |
117
|
|
|
memory_warm_start=results0, |
118
|
|
|
) |
119
|
|
|
hyper1.run() |
120
|
|
|
|
121
|
|
|
diff_time2 = time.time() - c_time2 |
122
|
|
|
|
123
|
|
|
assert diff_time2 < diff_time1 * 0.5 |
124
|
|
|
|
125
|
|
|
|
126
|
|
|
def test_memory_warm_start_manual(): |
127
|
|
|
data = load_breast_cancer() |
128
|
|
|
X, y = data.data, data.target |
129
|
|
|
|
130
|
|
|
def objective_function(opt): |
131
|
|
|
dtc = GradientBoostingClassifier(n_estimators=opt["n_estimators"],) |
132
|
|
|
scores = cross_val_score(dtc, X, y, cv=5) |
133
|
|
|
|
134
|
|
|
return scores.mean() |
135
|
|
|
|
136
|
|
|
search_space = { |
137
|
|
|
"n_estimators": list(np.arange(500, 502)), |
138
|
|
|
} |
139
|
|
|
|
140
|
|
|
c_time_1 = time.time() |
141
|
|
|
hyper = Hyperactive() |
142
|
|
|
hyper.add_search(objective_function, search_space, n_iter=1) |
143
|
|
|
hyper.run() |
144
|
|
|
diff_time_1 = time.time() - c_time_1 |
145
|
|
|
|
146
|
|
|
memory_warm_start = pd.DataFrame( |
147
|
|
|
[[500, 0.9], [501, 0.91]], columns=["n_estimators", "score"] |
148
|
|
|
) |
149
|
|
|
|
150
|
|
|
c_time = time.time() |
151
|
|
|
hyper0 = Hyperactive() |
152
|
|
|
hyper0.add_search( |
153
|
|
|
objective_function, |
154
|
|
|
search_space, |
155
|
|
|
n_iter=10, |
156
|
|
|
memory_warm_start=memory_warm_start, |
157
|
|
|
) |
158
|
|
|
hyper0.run() |
159
|
|
|
diff_time = time.time() - c_time |
160
|
|
|
|
161
|
|
|
assert diff_time_1 > diff_time * 0.3 |
162
|
|
|
|
163
|
|
|
|