1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
import copy |
7
|
|
|
import multiprocessing as mp |
8
|
|
|
import pandas as pd |
9
|
|
|
|
10
|
|
|
from typing import Union, List, Dict, Type |
11
|
|
|
|
12
|
|
|
from .optimizers import RandomSearchOptimizer |
13
|
|
|
from .run_search import run_search |
14
|
|
|
|
15
|
|
|
from .results import Results |
16
|
|
|
from .print_results import PrintResults |
17
|
|
|
from .search_space import SearchSpace |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
class Hyperactive: |
21
|
|
|
""" |
22
|
|
|
Initialize the Hyperactive class to manage optimization processes. |
23
|
|
|
|
24
|
|
|
Parameters: |
25
|
|
|
- verbosity: List of verbosity levels (default: ["progress_bar", "print_results", "print_times"]) |
26
|
|
|
- distribution: String indicating the distribution method (default: "multiprocessing") |
27
|
|
|
- n_processes: Number of processes to run in parallel or "auto" to determine automatically (default: "auto") |
28
|
|
|
|
29
|
|
|
Methods: |
30
|
|
|
- add_search: Add a new optimization search process with specified parameters |
31
|
|
|
- run: Execute the optimization searches |
32
|
|
|
- best_para: Get the best parameters for a specific search |
33
|
|
|
- best_score: Get the best score for a specific search |
34
|
|
|
- search_data: Get the search data for a specific search |
35
|
|
|
""" |
36
|
|
|
|
37
|
|
|
def __init__( |
38
|
|
|
self, |
39
|
|
|
verbosity: list = ["progress_bar", "print_results", "print_times"], |
40
|
|
|
distribution: str = "multiprocessing", |
41
|
|
|
n_processes: Union[str, int] = "auto", |
42
|
|
|
): |
43
|
|
|
super().__init__() |
44
|
|
|
if verbosity is False: |
45
|
|
|
verbosity = [] |
46
|
|
|
|
47
|
|
|
self.verbosity = verbosity |
48
|
|
|
self.distribution = distribution |
49
|
|
|
self.n_processes = n_processes |
50
|
|
|
|
51
|
|
|
self.opt_pros = {} |
52
|
|
|
|
53
|
|
|
def _create_shared_memory(self): |
54
|
|
|
_bundle_opt_processes = {} |
55
|
|
|
|
56
|
|
|
for opt_pros in self.opt_pros.values(): |
57
|
|
|
if opt_pros.memory != "share": |
58
|
|
|
continue |
59
|
|
|
name = opt_pros.objective_function.__name__ |
60
|
|
|
|
61
|
|
|
_bundle_opt_processes.setdefault(name, []).append(opt_pros) |
62
|
|
|
|
63
|
|
|
for opt_pros_l in _bundle_opt_processes.values(): |
64
|
|
|
# Check if the lengths of the search spaces of all optimizers in the list are the same. |
65
|
|
|
if ( |
66
|
|
|
len(set(len(opt_pros.s_space()) for opt_pros in opt_pros_l)) |
67
|
|
|
== 1 |
68
|
|
|
): |
69
|
|
|
manager = mp.Manager() # get new manager.dict |
70
|
|
|
shared_memory = manager.dict() |
71
|
|
|
for opt_pros in opt_pros_l: |
72
|
|
|
opt_pros.memory = shared_memory |
73
|
|
|
else: |
74
|
|
|
for opt_pros in opt_pros_l: |
75
|
|
|
opt_pros.memory = opt_pros_l[ |
76
|
|
|
0 |
77
|
|
|
].memory # get same manager.dict |
78
|
|
|
|
79
|
|
|
@staticmethod |
80
|
|
|
def _default_opt(optimizer): |
81
|
|
|
if isinstance(optimizer, str): |
82
|
|
|
if optimizer == "default": |
83
|
|
|
optimizer = RandomSearchOptimizer() |
84
|
|
|
return copy.deepcopy(optimizer) |
85
|
|
|
|
86
|
|
|
@staticmethod |
87
|
|
|
def _default_search_id(search_id, objective_function): |
88
|
|
|
if not search_id: |
89
|
|
|
search_id = objective_function.__name__ |
90
|
|
|
return search_id |
91
|
|
|
|
92
|
|
|
@staticmethod |
93
|
|
|
def check_list(search_space): |
94
|
|
|
for key in search_space.keys(): |
95
|
|
|
search_dim = search_space[key] |
96
|
|
|
|
97
|
|
|
error_msg = "Value in '{}' of search space dictionary must be of type list".format( |
98
|
|
|
key |
99
|
|
|
) |
100
|
|
|
if not isinstance(search_dim, list): |
101
|
|
|
print("Warning", error_msg) |
102
|
|
|
# raise ValueError(error_msg) |
103
|
|
|
|
104
|
|
|
def add_search( |
105
|
|
|
self, |
106
|
|
|
objective_function: callable, |
107
|
|
|
search_space: Dict[str, list], |
108
|
|
|
n_iter: int, |
109
|
|
|
search_id=None, |
110
|
|
|
optimizer: Union[str, Type[RandomSearchOptimizer]] = "default", |
111
|
|
|
n_jobs: int = 1, |
112
|
|
|
initialize: Dict[str, int] = {"grid": 4, "random": 2, "vertices": 4}, |
113
|
|
|
constraints: List[callable] = None, |
114
|
|
|
pass_through: Dict = None, |
115
|
|
|
callbacks: Dict[str, callable] = None, |
116
|
|
|
catch: Dict = None, |
117
|
|
|
max_score: float = None, |
118
|
|
|
early_stopping: Dict = None, |
119
|
|
|
random_state: int = None, |
120
|
|
|
memory: Union[str, bool] = "share", |
121
|
|
|
memory_warm_start: pd.DataFrame = None, |
122
|
|
|
): |
123
|
|
|
""" |
124
|
|
|
Set up and initialize a search process for optimizing an objective function over a given search space. |
125
|
|
|
""" |
126
|
|
|
self.check_list(search_space) |
127
|
|
|
|
128
|
|
|
constraints = constraints or [] |
129
|
|
|
pass_through = pass_through or {} |
130
|
|
|
callbacks = callbacks or {} |
131
|
|
|
catch = catch or {} |
132
|
|
|
early_stopping = early_stopping or {} |
133
|
|
|
|
134
|
|
|
optimizer = self._default_opt(optimizer) |
135
|
|
|
search_id = self._default_search_id(search_id, objective_function) |
136
|
|
|
s_space = SearchSpace(search_space) |
137
|
|
|
|
138
|
|
|
optimizer.setup_search( |
139
|
|
|
objective_function=objective_function, |
140
|
|
|
s_space=s_space, |
141
|
|
|
n_iter=n_iter, |
142
|
|
|
initialize=initialize, |
143
|
|
|
constraints=constraints, |
144
|
|
|
pass_through=pass_through, |
145
|
|
|
callbacks=callbacks, |
146
|
|
|
catch=catch, |
147
|
|
|
max_score=max_score, |
148
|
|
|
early_stopping=early_stopping, |
149
|
|
|
random_state=random_state, |
150
|
|
|
memory=memory, |
151
|
|
|
memory_warm_start=memory_warm_start, |
152
|
|
|
verbosity=self.verbosity, |
153
|
|
|
) |
154
|
|
|
|
155
|
|
|
n_jobs = mp.cpu_count() if n_jobs == -1 else n_jobs |
156
|
|
|
|
157
|
|
|
for _ in range(n_jobs): |
158
|
|
|
nth_process = len(self.opt_pros) |
159
|
|
|
self.opt_pros[nth_process] = optimizer |
160
|
|
|
|
161
|
|
|
def _print_info(self): |
162
|
|
|
print_res = PrintResults(self.opt_pros, self.verbosity) |
163
|
|
|
|
164
|
|
|
if self.verbosity: |
165
|
|
|
for _ in range(len(self.opt_pros)): |
166
|
|
|
print("") |
167
|
|
|
|
168
|
|
|
for results in self.results_list: |
169
|
|
|
nth_process = results["nth_process"] |
170
|
|
|
print_res.print_process(results, nth_process) |
171
|
|
|
|
172
|
|
|
def run(self, max_time: float = None): |
173
|
|
|
self._create_shared_memory() |
174
|
|
|
|
175
|
|
|
for opt in self.opt_pros.values(): |
176
|
|
|
opt.max_time = max_time |
177
|
|
|
|
178
|
|
|
self.results_list = run_search( |
179
|
|
|
self.opt_pros, self.distribution, self.n_processes |
180
|
|
|
) |
181
|
|
|
|
182
|
|
|
self.results_ = Results(self.results_list, self.opt_pros) |
183
|
|
|
|
184
|
|
|
self._print_info() |
185
|
|
|
|
186
|
|
|
def best_para(self, id_): |
187
|
|
|
return self.results_.best_para(id_) |
188
|
|
|
|
189
|
|
|
def best_score(self, id_): |
190
|
|
|
return self.results_.best_score(id_) |
191
|
|
|
|
192
|
|
|
def search_data(self, id_, times=False): |
193
|
|
|
search_data_ = self.results_.search_data(id_) |
194
|
|
|
|
195
|
|
|
if times == False: |
196
|
|
|
search_data_.drop( |
197
|
|
|
labels=["eval_times", "iter_times"], |
198
|
|
|
axis=1, |
199
|
|
|
inplace=True, |
200
|
|
|
errors="ignore", |
201
|
|
|
) |
202
|
|
|
return search_data_ |
203
|
|
|
|