1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
|
8
|
|
|
from sklearn.datasets import load_iris |
9
|
|
|
from sklearn.model_selection import cross_val_score |
10
|
|
|
from sklearn.tree import DecisionTreeClassifier |
11
|
|
|
from hyperactive import Hyperactive |
12
|
|
|
|
13
|
|
|
data = load_iris() |
14
|
|
|
X = data.data |
15
|
|
|
y = data.target |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
def model(para, X, y): |
19
|
|
|
model = DecisionTreeClassifier( |
20
|
|
|
max_depth=para["max_depth"], |
21
|
|
|
min_samples_split=para["min_samples_split"], |
22
|
|
|
min_samples_leaf=para["min_samples_leaf"], |
23
|
|
|
) |
24
|
|
|
scores = cross_val_score(model, X, y, cv=3) |
25
|
|
|
|
26
|
|
|
return scores.mean() |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
search_config = { |
30
|
|
|
model: { |
31
|
|
|
"max_depth": range(1, 21), |
32
|
|
|
"min_samples_split": range(2, 21), |
33
|
|
|
"min_samples_leaf": range(1, 21), |
34
|
|
|
} |
35
|
|
|
} |
36
|
|
|
|
37
|
|
|
warm_start = {model: {"max_depth": 2, "min_samples_split": 2, "min_samples_leaf": 2}} |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
def test_func_return(): |
41
|
|
|
def model1(para, X, y): |
42
|
|
|
model = DecisionTreeClassifier( |
43
|
|
|
criterion=para["criterion"], |
44
|
|
|
max_depth=para["max_depth"], |
45
|
|
|
min_samples_split=para["min_samples_split"], |
46
|
|
|
min_samples_leaf=para["min_samples_leaf"], |
47
|
|
|
) |
48
|
|
|
scores = cross_val_score(model, X, y, cv=3) |
49
|
|
|
|
50
|
|
|
return scores.mean(), model |
51
|
|
|
|
52
|
|
|
search_config1 = { |
53
|
|
|
model1: { |
54
|
|
|
"criterion": ["gini", "entropy"], |
55
|
|
|
"max_depth": range(1, 21), |
56
|
|
|
"min_samples_split": range(2, 21), |
57
|
|
|
"min_samples_leaf": range(1, 21), |
58
|
|
|
} |
59
|
|
|
} |
60
|
|
|
|
61
|
|
|
opt = Hyperactive(search_config1) |
62
|
|
|
opt.search(X, y) |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
def test_n_jobs_2(): |
66
|
|
|
opt = Hyperactive(search_config, n_jobs=2) |
67
|
|
|
opt.search(X, y) |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
def test_n_jobs_4(): |
71
|
|
|
opt = Hyperactive(search_config, n_jobs=4) |
72
|
|
|
opt.search(X, y) |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
def test_positional_args(): |
76
|
|
|
opt0 = Hyperactive(search_config, random_state=False) |
77
|
|
|
opt0.search(X, y) |
78
|
|
|
|
79
|
|
|
opt1 = Hyperactive(search_config, random_state=1) |
80
|
|
|
opt1.search(X, y) |
81
|
|
|
|
82
|
|
|
opt2 = Hyperactive(search_config, random_state=1) |
83
|
|
|
opt2.search(X, y) |
84
|
|
|
|
85
|
|
|
|
86
|
|
|
def test_random_state(): |
87
|
|
|
opt0 = Hyperactive(search_config, random_state=False) |
88
|
|
|
opt0.search(X, y) |
89
|
|
|
|
90
|
|
|
opt1 = Hyperactive(search_config, random_state=0) |
91
|
|
|
opt1.search(X, y) |
92
|
|
|
|
93
|
|
|
opt2 = Hyperactive(search_config, random_state=1) |
94
|
|
|
opt2.search(X, y) |
95
|
|
|
|
96
|
|
|
|
97
|
|
|
def test_max_time(): |
98
|
|
|
opt0 = Hyperactive(search_config, max_time=0.001) |
99
|
|
|
opt0.search(X, y) |
100
|
|
|
|
101
|
|
|
|
102
|
|
|
def test_memory(): |
103
|
|
|
opt0 = Hyperactive(search_config, memory=True) |
104
|
|
|
opt0.search(X, y) |
105
|
|
|
|
106
|
|
|
opt1 = Hyperactive(search_config, memory=False) |
107
|
|
|
opt1.search(X, y) |
108
|
|
|
|
109
|
|
|
|
110
|
|
|
def test_verbosity(): |
111
|
|
|
opt0 = Hyperactive(search_config, verbosity=0) |
112
|
|
|
opt0.search(X, y) |
113
|
|
|
|
114
|
|
|
opt0 = Hyperactive(search_config, n_jobs=2, verbosity=0) |
115
|
|
|
opt0.search(X, y) |
116
|
|
|
|
117
|
|
|
opt1 = Hyperactive(search_config, verbosity=1) |
118
|
|
|
opt1.search(X, y) |
119
|
|
|
|
120
|
|
|
opt0 = Hyperactive(search_config, n_jobs=2, verbosity=1) |
121
|
|
|
opt0.search(X, y) |
122
|
|
|
|
123
|
|
|
opt1 = Hyperactive(search_config, verbosity=2) |
124
|
|
|
opt1.search(X, y) |
125
|
|
|
|
126
|
|
|
|
127
|
|
|
def test_scatter_init(): |
128
|
|
|
opt = Hyperactive(search_config, scatter_init=10) |
129
|
|
|
opt.search(X, y) |
130
|
|
|
|
131
|
|
|
|
132
|
|
|
def test_optimizer_args(): |
133
|
|
|
opt = Hyperactive(search_config, optimizer={"HillClimbing": {"epsilon": 0.1}}) |
134
|
|
|
opt.search(X, y) |
135
|
|
|
|
136
|
|
|
|
137
|
|
|
def test_scatter_init_and_warm_start(): |
138
|
|
|
opt = Hyperactive(search_config, warm_start=warm_start, scatter_init=10) |
139
|
|
|
opt.search(X, y) |
140
|
|
|
|
141
|
|
|
opt = Hyperactive(search_config, warm_start=warm_start, scatter_init=10) |
142
|
|
|
opt.search(X, y) |
143
|
|
|
|
144
|
|
|
|
145
|
|
|
def test_warm_start_multiple_jobs(): |
146
|
|
|
opt = Hyperactive(search_config, n_jobs=4, warm_start=warm_start) |
147
|
|
|
opt.search(X, y) |
148
|
|
|
|
149
|
|
|
|
150
|
|
|
def test_warm_start(): |
151
|
|
|
opt = Hyperactive(search_config, n_jobs=1, warm_start=warm_start) |
152
|
|
|
opt.search(X, y) |
153
|
|
|
|
154
|
|
|
|
155
|
|
|
def test_get_search_path(): |
156
|
|
|
opt = Hyperactive(search_config, get_search_path=True) |
157
|
|
|
opt.search(X, y) |
158
|
|
|
|
159
|
|
|
opt = Hyperactive(search_config, optimizer="ParticleSwarm", get_search_path=True) |
160
|
|
|
opt.search(X, y) |
161
|
|
|
|
162
|
|
|
|
163
|
|
|
def test_load_memory(): |
164
|
|
|
para = pd.DataFrame( |
165
|
|
|
np.array([[2, 2, 2, 2, 2], [2, 2, 2, 2, 2]]), |
166
|
|
|
columns=[ |
167
|
|
|
"N_columns", |
168
|
|
|
"N_rows", |
169
|
|
|
"max_depth", |
170
|
|
|
"min_samples_leaf", |
171
|
|
|
"min_samples_split", |
172
|
|
|
], |
173
|
|
|
) |
174
|
|
|
score = pd.DataFrame(np.array([1, 1]), columns=["mean_test_score"]) |
175
|
|
|
|
176
|
|
|
opt = Hyperactive(search_config, n_iter=3, meta_learn=True) |
177
|
|
|
opt.search(X, y) |
178
|
|
|
opt._optimizer_.search(0, X, y)._space_.load_memory(para, score) |
179
|
|
|
|
180
|
|
|
|
181
|
|
|
test_load_memory() |
182
|
|
|
|