Conditions | 1 |
Total Lines | 12 |
Code Lines | 10 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
1 | from sklearn.datasets import load_iris |
||
12 | def model(para, X_train, y_train): |
||
13 | model = LogisticRegression( |
||
14 | C=para["C"], |
||
15 | dual=para["dual"], |
||
16 | penalty=para["penalty"], |
||
17 | solver=para["solver"], |
||
18 | multi_class=para["multi_class"], |
||
19 | max_iter=para["max_iter"], |
||
20 | ) |
||
21 | scores = cross_val_score(model, X_train, y_train, cv=3) |
||
22 | |||
23 | return scores.mean(), model |
||
24 | |||
43 |