| Total Complexity | 2 |
| Total Lines | 39 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import numpy as np |
||
| 2 | |||
| 3 | from hyperactive import Hyperactive |
||
| 4 | |||
| 5 | |||
| 6 | def convex_function(pos_new): |
||
| 7 | score = -(pos_new["x1"] * pos_new["x1"] + pos_new["x2"] * pos_new["x2"]) |
||
| 8 | return score |
||
| 9 | |||
| 10 | |||
| 11 | search_space = { |
||
| 12 | "x1": list(np.arange(-100, 101, 0.1)), |
||
| 13 | "x2": list(np.arange(-100, 101, 0.1)), |
||
| 14 | } |
||
| 15 | |||
| 16 | |||
| 17 | def constraint_1(para): |
||
| 18 | # reject parameters where x1 and x2 are higher than 2.5 at the same time |
||
| 19 | return not (para["x1"] > 2.5 and para["x2"] > 2.5) |
||
| 20 | |||
| 21 | |||
| 22 | # put one or more constraints inside a list |
||
| 23 | constraints_list = [constraint_1] |
||
| 24 | |||
| 25 | |||
| 26 | hyper = Hyperactive() |
||
| 27 | # pass list of constraints |
||
| 28 | hyper.add_search( |
||
| 29 | convex_function, |
||
| 30 | search_space, |
||
| 31 | n_iter=50, |
||
| 32 | constraints=constraints_list, |
||
| 33 | ) |
||
| 34 | hyper.run() |
||
| 35 | |||
| 36 | search_data = hyper.search_data(convex_function) |
||
| 37 | |||
| 38 | print("\n search_data \n", search_data, "\n") |
||
| 39 |