1
|
|
|
import numpy as np |
2
|
|
|
import pandas as pd |
3
|
|
|
|
4
|
|
|
from hyperactive import Hyperactive |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
def test_search_space_0(): |
8
|
|
|
def objective_function(opt): |
9
|
|
|
score = -opt["x1"] * opt["x1"] |
10
|
|
|
return score |
11
|
|
|
|
12
|
|
|
search_space = { |
13
|
|
|
"x1": list(range(0, 3, 1)), |
14
|
|
|
} |
15
|
|
|
|
16
|
|
|
hyper = Hyperactive() |
17
|
|
|
hyper.add_search( |
18
|
|
|
objective_function, search_space, n_iter=15, |
19
|
|
|
) |
20
|
|
|
hyper.run() |
21
|
|
|
|
22
|
|
|
assert isinstance(hyper.results(objective_function), pd.DataFrame) |
23
|
|
|
assert hyper.best_para(objective_function)["x1"] in search_space["x1"] |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def test_search_space_1(): |
27
|
|
|
def objective_function(opt): |
28
|
|
|
score = -opt["x1"] * opt["x1"] |
29
|
|
|
return score |
30
|
|
|
|
31
|
|
|
search_space = { |
32
|
|
|
"x1": list(np.arange(0, 0.003, 0.001)), |
33
|
|
|
} |
34
|
|
|
|
35
|
|
|
hyper = Hyperactive() |
36
|
|
|
hyper.add_search( |
37
|
|
|
objective_function, search_space, n_iter=15, |
38
|
|
|
) |
39
|
|
|
hyper.run() |
40
|
|
|
|
41
|
|
|
assert isinstance(hyper.results(objective_function), pd.DataFrame) |
42
|
|
|
assert hyper.best_para(objective_function)["x1"] in search_space["x1"] |
43
|
|
|
|
44
|
|
|
|
45
|
|
View Code Duplication |
def test_search_space_2(): |
|
|
|
|
46
|
|
|
def objective_function(opt): |
47
|
|
|
score = -opt["x1"] * opt["x1"] |
48
|
|
|
return score |
49
|
|
|
|
50
|
|
|
search_space = { |
51
|
|
|
"x1": list(range(0, 100, 1)), |
52
|
|
|
"str1": ["0", "1", "2"], |
53
|
|
|
} |
54
|
|
|
|
55
|
|
|
hyper = Hyperactive() |
56
|
|
|
hyper.add_search( |
57
|
|
|
objective_function, search_space, n_iter=15, |
58
|
|
|
) |
59
|
|
|
hyper.run() |
60
|
|
|
|
61
|
|
|
assert isinstance(hyper.results(objective_function), pd.DataFrame) |
62
|
|
|
assert hyper.best_para(objective_function)["str1"] in search_space["str1"] |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
def test_search_space_3(): |
66
|
|
|
def func1(): |
67
|
|
|
pass |
68
|
|
|
|
69
|
|
|
def func2(): |
70
|
|
|
pass |
71
|
|
|
|
72
|
|
|
def func3(): |
73
|
|
|
pass |
74
|
|
|
|
75
|
|
|
def objective_function(opt): |
76
|
|
|
score = -opt["x1"] * opt["x1"] |
77
|
|
|
return score |
78
|
|
|
|
79
|
|
|
search_space = { |
80
|
|
|
"x1": list(range(0, 100, 1)), |
81
|
|
|
"func1": [func1, func2, func3], |
82
|
|
|
} |
83
|
|
|
|
84
|
|
|
hyper = Hyperactive() |
85
|
|
|
hyper.add_search( |
86
|
|
|
objective_function, search_space, n_iter=15, |
87
|
|
|
) |
88
|
|
|
hyper.run() |
89
|
|
|
|
90
|
|
|
assert isinstance(hyper.results(objective_function), pd.DataFrame) |
91
|
|
|
assert ( |
92
|
|
|
hyper.best_para(objective_function)["func1"] in search_space["func1"] |
93
|
|
|
) |
94
|
|
|
|
95
|
|
|
|
96
|
|
|
def test_search_space_4(): |
97
|
|
|
class class1: |
98
|
|
|
pass |
99
|
|
|
|
100
|
|
|
class class2: |
101
|
|
|
pass |
102
|
|
|
|
103
|
|
|
class class3: |
104
|
|
|
pass |
105
|
|
|
|
106
|
|
|
def objective_function(opt): |
107
|
|
|
score = -opt["x1"] * opt["x1"] |
108
|
|
|
return score |
109
|
|
|
|
110
|
|
|
search_space = { |
111
|
|
|
"x1": list(range(0, 100, 1)), |
112
|
|
|
"class1": [class1, class2, class3], |
113
|
|
|
} |
114
|
|
|
|
115
|
|
|
hyper = Hyperactive() |
116
|
|
|
hyper.add_search( |
117
|
|
|
objective_function, search_space, n_iter=15, |
118
|
|
|
) |
119
|
|
|
hyper.run() |
120
|
|
|
|
121
|
|
|
assert isinstance(hyper.results(objective_function), pd.DataFrame) |
122
|
|
|
assert ( |
123
|
|
|
hyper.best_para(objective_function)["class1"] in search_space["class1"] |
124
|
|
|
) |
125
|
|
|
|
126
|
|
|
|
127
|
|
|
def test_search_space_5(): |
128
|
|
|
class class1: |
129
|
|
|
def __init__(self): |
130
|
|
|
pass |
131
|
|
|
|
132
|
|
|
class class2: |
133
|
|
|
def __init__(self): |
134
|
|
|
pass |
135
|
|
|
|
136
|
|
|
class class3: |
137
|
|
|
def __init__(self): |
138
|
|
|
pass |
139
|
|
|
|
140
|
|
|
def objective_function(opt): |
141
|
|
|
score = -opt["x1"] * opt["x1"] |
142
|
|
|
return score |
143
|
|
|
|
144
|
|
|
search_space = { |
145
|
|
|
"x1": list(range(0, 100, 1)), |
146
|
|
|
"class1": [class1(), class2(), class3()], |
147
|
|
|
} |
148
|
|
|
|
149
|
|
|
hyper = Hyperactive() |
150
|
|
|
hyper.add_search( |
151
|
|
|
objective_function, search_space, n_iter=15, |
152
|
|
|
) |
153
|
|
|
hyper.run() |
154
|
|
|
|
155
|
|
|
assert isinstance(hyper.results(objective_function), pd.DataFrame) |
156
|
|
|
assert ( |
157
|
|
|
hyper.best_para(objective_function)["class1"] in search_space["class1"] |
158
|
|
|
) |
159
|
|
|
|
160
|
|
|
|
161
|
|
View Code Duplication |
def test_search_space_6(): |
|
|
|
|
162
|
|
|
def objective_function(opt): |
163
|
|
|
score = -opt["x1"] * opt["x1"] |
164
|
|
|
return score |
165
|
|
|
|
166
|
|
|
search_space = { |
167
|
|
|
"x1": list(range(0, 100, 1)), |
168
|
|
|
"list1": [[1, 1, 1], [1, 2, 1], [1, 1, 2]], |
169
|
|
|
} |
170
|
|
|
|
171
|
|
|
hyper = Hyperactive() |
172
|
|
|
hyper.add_search( |
173
|
|
|
objective_function, search_space, n_iter=15, |
174
|
|
|
) |
175
|
|
|
hyper.run() |
176
|
|
|
|
177
|
|
|
assert isinstance(hyper.results(objective_function), pd.DataFrame) |
178
|
|
|
assert ( |
179
|
|
|
hyper.best_para(objective_function)["list1"] in search_space["list1"] |
180
|
|
|
) |
181
|
|
|
|