Completed
Push — master ( f67568...5e5af8 )
by Simon
01:28
created

test_start_up_evals()   A

Complexity

Conditions 2

Size

Total Lines 7
Code Lines 7

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 2
eloc 7
nop 0
dl 0
loc 7
rs 10
c 0
b 0
f 0
1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
import numpy as np
6
7
from hyperactive import Hyperactive
8
9
X, y = np.array([0]), np.array([0])
10
memory = False
11
n_iter = 25
12
13
14
def sphere_function(para, X_train, y_train):
15
    loss = []
16
    for key in para.keys():
17
        if key == "iteration":
18
            continue
19
        loss.append(para[key] * para[key])
20
21
    return -np.array(loss).sum()
22
23
24
search_config = {
25
    sphere_function: {"x1": np.arange(-3, 3, 0.1), "x2": np.arange(-3, 3, 0.1)}
26
}
27
28
29
def test_start_up_evals():
30
    for start_up_evals in [1, 100]:
31
        opt = Hyperactive(X, y, memory=memory)
32
        opt.search(
33
            search_config,
34
            n_iter=n_iter,
35
            optimizer={"Bayesian": {"start_up_evals": start_up_evals}},
36
        )
37
38
39
def test_warm_start_smbo():
40
    opt = Hyperactive(X, y, memory="long")
41
    opt.search(
42
        search_config, n_iter=n_iter, optimizer={"Bayesian": {"warm_start_smbo": True}}
43
    )
44
45
46
def test_max_sample_size():
47
    for max_sample_size in [10, 100, 10000, 10000000000]:
48
        opt = Hyperactive(X, y, memory=memory)
49
        opt.search(
50
            search_config,
51
            n_iter=n_iter,
52
            optimizer={"Bayesian": {"max_sample_size": True}},
53
        )
54
55
56
def test_gpr():
57
    opt = Hyperactive(X, y, memory=memory)
58
    opt.search(
59
        search_config, n_iter=n_iter, optimizer={"Bayesian": {"gpr": "gp_linear"}}
60
    )
61